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RL Can Be Costly

- Deep RL algorithms usually require tremendous training samples
* Impractical or inefficient in complex environments

this is done
' many times _
==

Supervised Learning Reinforcement Learning

« Dataset is collected beforehand
* Fit the labeled data

Dataset is collected during interaction
Find a good policy by trial-and-error

Figures from Offline RL Tutorial at NeurlPS 2020



Datasets for Decision Making

* Pre-collected demonstrations in many domains

* Robotics

» Autonomous Driving WAYMO

- en

Dataset

RoboNet Waymo Open Dataset

Figures from RoboNet and Waymo



Topics of This Talk

- Key questions to discuss
« How to utilize demonstrations in RL and planning?
« How to collect demonstrations that are useful for RL and planning?



Outline

« Use Demonstrations
« Offline — without interactions with environments

* Online — with interactions with environments
« Collect Demonstrations
* Future Directions



Outline

« Use Demonstrations
« Offline — without interactions with environments
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Demo Use — Offline & Online

- Offline Stage
+ Agent cannot access the environment
+ Only learn from the demonstrations

 Online Stage

+ Agent can interact with the environment

state
S

"l Agent |

)

s

Environment J<—

\

 Learn from the environment while still leveraging demonstrations

* Note
 Both stages are optional
« They can also be combined together

action
A,
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Use Demo Offline

« What to learn from the demo?

state reward

"| Agent |

- g |

. Rt+1 (

;St+l EnMnt ]4_

action

Demonstrations]

\




Learn Policy

- Imitation Learning
+ Imitate the behaviors in demonstrations
- Two types of methods: behavior cloning and inverse RL

 Behavior Cloning (BC)
« Supervised learning, i.e., clone the expert’s actions at each state in demo

. maximize Z In g (als)
(s’a)EPD

* Inverse RL
* Recover a reward function that can induce the behaviors in demonstrations
« We will talk more about this later

- Limitations of Imitation Learning
* Requires expert demonstrations
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Learn Policy

« Offline RL

on-policy reinforcement learning  (b) off-policy reinforcement learning

rollout data {(Si, aj, 527 Tz)} rollout data {(Si7 ag, S;; y n)}

(c) offline reinforcement learning

- e - —

{(Si,aiysgyri)}. l
| I |
I =
3 @
- D I ;
Q TR — | & /it
a : learn a
rollout(s) I TC | deployment
datacollected once == == == == ==
with any policy training phase

Figures from Levine, Sergey, et al. "Offline reinforcement learning: Tutorial, review, and perspectives on open problems."



Learn Policy

- |s offline learned policy good enough?
* No, due to the distribution shift

- When we use a learned policy to act, it changes what we see

— training trajectory

Simple example: - =— Ty expected trajectory

behavioral cloning
train 7y to copy
assume data is optimal

error scales as O(T?)

Figures from Offline RL Tutorial at NeurlPS 2020
Ross et al. A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning. ‘11
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Learn Policy

- Common Practice: Fine-tune it by online RL
- Example: AlphaGo

Rollout policy SL policy network RL policy network Value network

P Py P,

XN m

Human expert positions Self-play positions

Vo
S
.0}0
9
(3
(S
'

Figures from Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search."
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Use Demo Offline

« What to learn from the demo?

action
A,

7

Demonstrations]

\

Reward is not present in demo?

We can still infer the reward offline if we have some trajectory-level labels,
e.g., success and failure

Figures adapted from Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction.
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Infer Reward / Goal

* Learn a goal classifier from demo, and regard it as a reward
* Positive samples: the last observation in each success trajectory
« Negative samples: observations from failure trajectories

Failure Success Success

Figures from Singh, Avi, et al. "End-to-end robotic reinforcement learning without reward engineering." 29



Use Demo Offline

« What to learn from the demo?

’J Agent l
state reward action
S t R t At

- < Rt+1 ( .
i Sl Env ent |[¢———
\.

7

Demonstrations]

\

In visual RL, the observations / states usually very high-dimensional

Representation Learning

Figures adapted from Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction.
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Learn Representation

 Learn representation in in-domain dataset

- E.g., pre-train the visual encoder by contrastive learning
+ Minimize distance between positive samples and maximize distance of negative samples

(a) Reach (b) Pickup (c) Move (d) Pull (e) Light Switch (f) Drawer Open

Figures from Zhan, Albert, et al. "Learning Visual Robotic Control Efficiently with Contrastive Pre-training and Data Augmentation."

31



Learn Representation

 Learn representation in large external datasets

MetaWorld Franka Kitchen Adroit

“stirs the snacks in a
pan with a strainer

within her left hand”

“wiping the window
with the rag”

“picks up a piece of
wood from the
workbench with his
right hand”

Figures from Nair, Suraj, et al. "R3m: A universal visual representation for robot manipulation." 32



Use Demo Offline

« What to learn from the demo?

'J Agent |

)
state reward action
S, | (R A,
. Rt+l ("
S EnMnt ]4—
\
) ””,,
Demonstrations] <l -
\ .

Figures adapted from Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction.

What if we have demos from
many different tasks?

— o o o o o e e o o

Many demonstrations
for task A

Many demonstrations
for task B

L —

more demonstrations for

\ more tasks /
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Learn Trajectory Imitator

« One-Shot Imitation Learning
 Given a trajectory at the test time

 Trained to imitate the trajectory, instead of completing the tasks

Policy for task F

Many demonstrations
for task A

Single demonstration
Many demonstrations for task F
for task A +

Many demonstrations
for task B

sample

|

Demo,

One-Shot Imitator
(Neural Network)

predicted
action

> Meta Leamning | One-Shot Imitator
Algorithm "] (Neural Network)
Many demonstrations
for task B action ¢ obs

Environment

more demonstrations for

more tasks

(b) One-Shot Imitation Learning

Figures from Duan, Yan, et al. "One-shot imitation learning."

| Y

Supervised loss

(¢) Training the One-Shot Imitator

\ .
observation from

Demo,

corresponding
action in Demo,
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Use Demo Offline

« What to learn from the demo?

state reward

. Rt+l

:l Agent ||

4 St+1

4

Demonstrations]

Figures adapted from Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction.

Learn the RL algorithm itself?
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Learn Algorithm

- Algorithm Distillation
- Assume the demo dataset contains the whole learning history of an agent
« Train a transformer to predict actions given the preceding learning history

Data Generation

Task 1 | |

| RL algorithm
learning histories

) (n) _
Task n hT —(Oo,ao,ro,Ol,al,Tl,...,OT,CLT,TT)n

____________________________________

learning progress

Model Training

Predict actions using
U =0 O e | | ] > across-episodic contexts
I R

Causal Transformer " P@(at|ht—1a Ot)

Figures from Laskin, Michael, et al. "In-context Reinforcement Learning with Algorithm Distillation." 36



Use Demo Offline

- What to learn from the demo?
* Policy
- Skill
« World Model
« Reward / Goal
« Representation
* Trajectory Imitator
« Algorithm

- Maybe there will be more creative ways to use demo offline in the future?

37



Outline

 Use Demonstrations

* Online — with interactions with environments

38



Use Demo Online

- Utilize demo during online learning directly
* A preceding offline learning stage is optional
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Demo as Off-Policy Experience

- Add demo into the replay buffer of off-policy RL algorithms

training
P batch (1-p)

learner P
double Q-learning repl
+ n-step return target agent eplay

demo replay

Figures from Paine, Tom Le, et al. "Making efficient use of demonstrations to solve hard exploration problems."
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Demo as On-Policy Regularization

- Augment the RL objective with a regularization term
- Encourages the agent to keep the behavior close to the demo

- Expert trajectory
= = Random exploration
- Exploration direction

Figures from Kang, Bingyi, Zequn Jie, and Jiashi Feng. "Policy optimization with demonstrations."
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Demo as On-Policy Regularization

- Augment the RL objective with a regularization term
- Encourages the agent to keep the behavior close to the demo
- POID (Policy Optimization from Demo)

L (mg) = —n (m9) + M Dys (pe, pE)

, where the D jg denotes the Jensen-Shannon divergence, the pg and pg are the
occupancy measures of agent policy and expert policy, respectively.

Kang et. al, “Policy Optimization with Demonstrations”
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Demo as On-Policy Regularization

- Augment the RL objective with a regularization term
- Encourages the agent to keep the behavior close to the demo
- DAPG (Demo Augmented Policy Gradient)

gaug = Z Vglnﬂ'g CL’ Z Vglnﬂg a\ ( )

(s,0)€pn (s,a)€pp

where w(s, a) is a weighting function. In practice, w(s, a) is implemented as a
heuristic weighting function:

w(s,a) = /\0)\]1"’ (slrral/?ch A" (s',ad') V(s,a) € pp

where \y and \; are hyperparameters, and k is the iteration counter,

Rajeswaran et. al, “Demo Augmented Policy Gradient for Dextrous Hand Manipulation” 43



Demo as Reference for Reward

- Regularization modifies the RL learning objective
- Another natural way is to convert demo into reward, then the demo

is automatically incorporated into RL objective

« Two kinds of ideas:
- Directly define reward based on a single demo trajectory
« Match the distribution of demonstrations, and use the divergence as the

reward

44



Define Reward with a Single Demo

* Reward: the distance to the demo trajectory in an embedding space
« The embedding space can be learned

. {05 if(g(’Uagent) : &('Ucheckpoint) > o
Timitation

" 10.0 otherwise

(a) An example path (b) Aligned frames (c) Our embedding (d) Pixel embedding



Define Reward with a Single Demo

- Reward: the distance to the demo trajectory in an embedding space
« The embedding space can be manually defined

Motion Motion
J J

Retargeting Imitation I

g, U N\ L: !L i : z. re = wPry + w'r} + wrf + wPr + w™r}
Simulation Domain
‘ReaIWOHd ﬁMocap | ‘ @Adaptation ‘ T = exp {—402 ||%5 —xf”?] J |

= — - ,r;p exp [_20||5~{1£00t _ xlt-oot||2 _ 10||('~11t-00t _ q;oot||2]
/,; / \

exp |:_2||}'-‘(1];oot _ }k;oot||2 _ 0'2||(?1;00t _ q;oot||2:|
Animal Robot

Motion Data Reference Motion Policy (Simulation i ; YT
4 ) rf = exp [—5Z|Iqi —q§||2] r} = exp [—O-IZIIqi —q€||2]

Figures from Peng, Xue Bin, et al. "Learning agile robotic locomotion skills by imitating animals."
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Match the Distribution of Demo

- Reward: the divergence between agent trajectories and demo
 Usually needs to be approximated due to the computation cost

* This is actually the idea behind most inverse RL methods

Algorithm 1: Template for IRL
Input: M\g,= (S,A,T,7),
Set of trajectories demonstrating desired behavior:
D= {<(807a0)’ (517a1)a ) (Sta at)>7 o '}’ St € S, ag € Aa te Na
or expert’s policy: g, and reward function features
Output: Rp

1 Model the expert’s observed behavior as the solution of an MDP whose
reward function is not known;

2 Initialize the parameterized form of the reward function using any given
features (linearly weighted sum of feature values, distribution over
rewards, or other);

3 Solve the MDP with current reward function to generate the learned
behavior or policy;

4 Update the optimization parameters to minimize the divergence between
the observed behavior (or policy) and the learned behavior (policy);

5 Repeat the previous two steps till the divergence is reduced to a desired
level.

Algorithm from Arora, Saurabh, and Prashant Doshi. "A survey of inverse reinforcement learning: Challenges, methods and progress."



Match the Distribution of Demo

- GAIL (Generative adversarial imitation learning)
- Reward is Jensen-Shannon divergence, implemented similar to GANs
« Generator: policy m(als)
- Discriminator: predicts (s, a) from agent or demo
- Discriminator has to predict source of (s, a), generator tries to fool
discriminator by generating actions that look like the demo distribution

Algorithm 1 Generative adversarial imitation learning
1: Input: Expert trajectories 7z ~ 7, initial policy and discriminator parameters g, wo
2: for:=0,1,2,... do
3:  Sample trajectories 7; ~ 7y,
4:  Update the discriminator parameters from w; to w;; with the gradient

K., [V log(Dy(s,a))] + K., [V log(1 — Dy(s, a))] (17)

5:  Take a policy step from 6; to 6;1, using the TRPO rule with cost function log(D.,,,, (s, a)).
Specifically, take a KL-constrained natural gradient step with

E., [Vo log m(als)Q(s, a)] — AV H (7o),

X (18)
where Q(5, @) = E;, [log(Duy,,,(s,a)) | s0 = 5,00 = @

6: end for
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Demo as Curriculum of Start States

- Assume the environment is a simulator that we can fully control

- Reset to the states in demo, and start to explore from there
+ Uniformly sample states in demo as the start states

Figures from Peng, Xue Bin, et al. "Deepmimic: Example-guided deep reinforcement learning of physics-based character skills." 49



Demo as Curriculum of Start States

- Assume the environment is a simulator that we can fully control

- Reset to the states in demo, and start to explore from there
« Or start from the end of the demo, and gradually go backwards

avll: ERVE: LV (oW

——— trainingtme —— >



Outline

« Collect Demonstrations



Collect Demo

« Use Embodied Al as an example domain

« Demo can be collected in various ways
By human or by robots
* In simulators or in the real world

* One of the most popular domains to use demonstrations

« Focus on acquiring expert demonstrations
* Non-expert demo are relatively easy to get

Figures from WALL-E
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Collect Demo

- Embodiment: the “physical body” of the agent

* Operator: the “brain” to control the agent
Operator
Robot Human
Embodiment
Robot v/ v

Human X \/

Figures from WALL-E



- Embodiment: the “physical body” of the agent

Collect Demo

* Operator: the “brain” to control the agent
Operator
Robot Human
Embodiment
Robot V
Human

- o o o o o Em Em Em Em oEm ay,

Usually done by
teleoperation

(remote control)

—————————————

54



Teleoperation — Basic Devices

¥ Control ¥ Actor/Entity

Name: right_panda_hand
Class: Link

1d: 21

Position

+ Pause Single Step
Camera Speed
0.050 Move
0,005 Rotate o .
0500 Seroll G
Camera
None ¥ Name

y
0.743 z
Rotation

-0.630 w
-0.009 x
-0.736 y
0.248

Show Hide Collision

Display Settings
90 deg
Color
1024x768
Actor Selection

+/ Coordinate Axes
0.706 Mass

¥ Scene Hierarchy

» Collision Shapes
> World
o ¥ Articulation Bodies
Name: mobile_a2_single_arm

Class: Articulation

Base Link Id: 6

> Joints

Show Hide Collision

Smartphone (RoboTurk)

Keyboard + Mouse
(Many Simulation Environments)

Video from Mandlekar, Ajay, et al. "Roboturk: A crowdsourcing platform for robotic skill learning through imitation."



Teleoperation — Virtual Reality

* VR is widely adopted in many simulation environments

VR Interface

Cooking Onion

Headset + Regular Hand Controllers Headset + Motion Capture Gloves
(iGibson 2) (RFUniverse)

Figure and video from iGibson 2.0 and RFUniverse
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Teleoperation — Virtual Reality

- VR is also used when collecting robot demo in the real world

VR remotes + joystick
(RT-1)

Video from Brohan, Anthony, et al. "RT-1: Robotics Transformer for Real-World Control at Scale."
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- Embodiment: the “physical body” of the agent

Collect Demo

» Operator: the “brain” to control the agent
Operator
Robot Human
Embodiment
Robot \/ e
Human

]
I
I
I
I
I
I

Build an autonomous
system to control the

robot

——————————————

T —————— -
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Autonomous System — Planning

- Use planners to generate demo (assume world model is known)

.y o
() i 2 3 |
. Y_4 1R E "pick up the dirty mug | i =il
} m I8 B8 from the coffee maker” \ 'turn and walk to the sink" |¥
E .l "walk to the coffee | | —

1| maker on the right" ‘ﬂ =) 4 = :

q

t=21

€lo-| "Rinse off a mug and place it in the coffee maker"
E..d y Il
R
object interaction g= visual navigation

"pick up the mug and go
back to the coffee maker"

state changes

Symbolic Planner for High-level Tasks
(ALFRED)

Figures from

Motion Planner for Low-level Tasks
(RLBench)
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Autonomous System — Learning

» Learning-based methods

- Design different methods for different tasks

"

B

RL alone is already enough Waypoint generator + Goal-
for many tasks reaching policy from RL

DAPG + a few human demo
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Autonomous System - Self-supervised

in the real world

« QT-opt

* Run RL in the real world

» Vision system to get a
sparse reward




Autonomous System - Self-supervised

« MT-Opt
* Reset by special boxes
« Success detectors trained on data

from all tasks
« Use the solutions to easier tasks to

bootstrap learning of more complex
tasks

QO MT-Opt training

Video from Kalashnikov, Dmitry, et al. "Mt-opt: Continuous multi-task robotic reinforcement learning at scale."



- Embodiment: the “physical body” of the agent

Collect Demo

* Operator: the “brain” to control the agent
Operator
Robot Human
Embodiment
Robot
Human V<€

|
I
I
I
I
I

-

- o e

Robot can also learn
from datasets of

human activities

e e e e e e e e e e

T o o . — — ——— -
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Human Demo Datasets

- Ego4D
- Ego-centric, multi-modal dataset of human activities

%9 ,,,,,,,, o Adi

T & Bakin
Geographic diversity

Sy ] wif g auncry 48 | =i

J
Video + 3D scans

Social interaction

Figures from Grauman, Kristen, et al. "Ego4d: Around the world in 3,000 hours of egocentric video."



Human Demo Datasets

- RoboTube
« Human video dataset + its digital twin in simulation environment

. 4 A
N K% §

Figures from Fu, Haoyuan, et al. "RoboTube: Learning Household Manipulation from Human Videos with Simulated Twin Environments."
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Outline

« Use Demonstrations
« Offline — without interactions with environments
« Online — with interactions with environments

« Collect Demonstrations
* Future Directions
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Outline

« Future Directions



Future Directions

 Scale up demo collection

+ Teleoperation-based approaches

* Pros: provides high-quality and diverse demo

« Cons: very costly, hard to scale up
 Learning-based autonomous data collection pipelines

+ Pros: generates unlimited data, easier to scale up

+ Cons: not strong enough to solve some complex tasks, quality of demo is an issue
- Combine them together?

« Human-in-the-loop autonomous system which improves itself over time?

- Still a long way to go...
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Future Directions

- What kinds of demo do we really need?
 Quality: always need near-optimal demo?

+ Modality: learn robot policies from videos and language descriptions?
- Embodiment: learn robot policies from human?
- Content: always need actions? rewards?
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Future Directions

- Combine offline learning from demo with online learning
« Though there have been several preliminary attempts, the problem is still not
solved yet
« Demo can come in different forms and different qualities
« Solutions might need to be designed for each different scenario

 An interesting problem to study

+ Low to learn from non-optimal, cross-domain, partially observed demonstrations
« This kind of demo is what we usually get in the real world
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Thank you!



