

CSE-276F

Boosting Reinforcement Learning and Planning with Demonstrations: A Survey

Stone Tao Slides prepared by Tongzhou Mu and Stone Tao

RL Can Be Costly

- Deep RL algorithms usually require tremendous training samples
 - Impractical or inefficient in complex environments

this is done many times

Supervised Learning

- Dataset is collected beforehand
- Fit the labeled data

Reinforcement Learning

- Dataset is collected during interaction
- Find a good policy by trial-and-error

Figures from Offline RL Tutorial at NeurIPS 2020

Datasets for Decision Making

- Pre-collected demonstrations in many domains
 - Robotics
 - Autonomous Driving
 - ...

RoboNet

Waymo Open Dataset

Figures from RoboNet and Waymo

Topics of This Talk

- Key questions to discuss
 - How to utilize demonstrations in RL and planning?
 - How to collect demonstrations that are useful for RL and planning?

Outline

7

Use Demonstrations

- Offline without interactions with environments
- Online with interactions with environments
- Collect Demonstrations
- Future Directions

Outline

Use Demonstrations

- Offline without interactions with environments
- Online with interactions with environments
- Collect Demonstrations
- Future Directions

Demo Use – Offline & Online

Offline Stage

- Agent cannot access the environment
- Only learn from the demonstrations
- Online Stage
 - Agent can interact with the environment

- Note
 - · Both stages are optional
 - · They can also be combined together

Use Demo Offline

• What to learn from the demo?

Figures adapted from Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction.

- Imitation Learning
 - · Imitate the behaviors in demonstrations
 - Two types of methods: behavior cloning and inverse RL
- Behavior Cloning (BC)
 - Supervised learning, i.e., clone the expert's actions at each state in demo

$$ext{maximize}_{ heta} \sum_{(s,a) \in
ho_D} \ln \pi_ heta(a|s)$$

Inverse RL

•

- · Recover a reward function that can induce the behaviors in demonstrations
- · We will talk more about this later
- Limitations of Imitation Learning
 - Requires expert demonstrations

Figures from Levine, Sergey, et al. "Offline reinforcement learning: Tutorial, review, and perspectives on open problems."

- Is offline learned policy good enough?
 - No, due to the distribution shift
 - When we use a learned policy to act, it changes what we see

Figures from Offline RL Tutorial at NeurIPS 2020 Ross et al. A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning. '11

- Common Practice: Fine-tune it by online RL
 - Example: AlphaGo

Figures from Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search."

Use Demo Offline

• What to learn from the demo?

Reward is not present in demo?

We can still infer the reward offline if we have some trajectory-level labels, e.g., success and failure

Figures adapted from Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction.

Infer Reward / Goal

- Learn a goal classifier from demo, and regard it as a reward
 - · Positive samples: the last observation in each success trajectory
 - Negative samples: observations from failure trajectories

Figures from Singh, Avi, et al. "End-to-end robotic reinforcement learning without reward engineering."

Use Demo Offline

• What to learn from the demo?

In visual RL, the observations / states usually very high-dimensional

Representation Learning

Figures adapted from Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction.

Learn Representation

- Learn representation in in-domain dataset
 - E.g., pre-train the visual encoder by contrastive learning
 - Minimize distance between positive samples and maximize distance of negative samples

Figures from Zhan, Albert, et al. "Learning Visual Robotic Control Efficiently with Contrastive Pre-training and Data Augmentation."

Learn Representation

• Learn representation in large external datasets

Figures from Nair, Suraj, et al. "R3m: A universal visual representation for robot manipulation."

Use Demo Offline

• What to learn from the demo?

What if we have demos from many different tasks?

Figures adapted from Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction.

Learn Trajectory Imitator

- One-Shot Imitation Learning
 - · Given a trajectory at the test time
 - Trained to imitate the trajectory, instead of completing the tasks

Use Demo Offline

• What to learn from the demo?

Learn the RL algorithm itself?

Learn Algorithm

- Algorithm Distillation
 - · Assume the demo dataset contains the whole learning history of an agent
 - Train a transformer to predict actions given the preceding learning history

Data Generation

Figures from Laskin, Michael, et al. "In-context Reinforcement Learning with Algorithm Distillation."

Use Demo Offline

- What to learn from the demo?
 - Policy
 - Skill
 - World Model
 - Reward / Goal
 - Representation
 - Trajectory Imitator
 - Algorithm
 - ...
 - Maybe there will be more creative ways to use demo offline in the future?

Outline

Use Demonstrations

- Offline without interactions with environments
- Online with interactions with environments
- Collect Demonstrations
- Future Directions

Use Demo Online

- Utilize demo during online learning directly
- A preceding offline learning stage is optional

Demo as Off-Policy Experience

• Add demo into the replay buffer of off-policy RL algorithms

Figures from Paine, Tom Le, et al. "Making efficient use of demonstrations to solve hard exploration problems."

Demo as On-Policy Regularization

- · Augment the RL objective with a regularization term
- Encourages the agent to keep the behavior close to the demo

Figures from Kang, Bingyi, Zequn Jie, and Jiashi Feng. "Policy optimization with demonstrations."

Demo as On-Policy Regularization

- · Augment the RL objective with a regularization term
- Encourages the agent to keep the behavior close to the demo
- POfD (Policy Optimization from Demo)

 $\mathcal{L}\left(\pi_{ heta}
ight) = -\eta\left(\pi_{ heta}
ight) + \lambda_{1}D_{JS}\left(
ho_{ heta},
ho_{E}
ight)$

, where the D_{JS} denotes the Jensen-Shannon divergence, the $ho_{ heta}$ and ho_E are the occupancy measures of agent policy and expert policy, respectively.

Demo as On-Policy Regularization

- Augment the RL objective with a regularization term
- Encourages the agent to keep the behavior close to the demo
- DAPG (Demo Augmented Policy Gradient)

$$g_{aug} = \sum_{(s,a)\in
ho_\pi}
abla_ heta\ln\pi_ heta(a|s)A^\pi(s,a) + \sum_{(s,a)\in
ho_D}
abla_ heta\ln\pi_ heta(a|s)w(s,a)$$

,where w(s,a) is a weighting function. In practice, w(s,a) is implemented as a heuristic weighting function:

$$w(s,a) = \lambda_0 \lambda_1^k \max_{(s',a') \in
ho_\pi} A^\pi \left(s',a'
ight) \quad orall (s,a) \in
ho_D$$

,where λ_0 and λ_1 are hyperparameters, and k is the iteration counter.

Rajeswaran et. al, "Demo Augmented Policy Gradient for Dextrous Hand Manipulation"

Demo as Reference for Reward

- Regularization modifies the RL learning objective
- Another natural way is to convert demo into reward, then the demo is automatically incorporated into RL objective
- Two kinds of ideas:
 - Directly define reward based on a single demo trajectory
 - Match the distribution of demonstrations, and use the divergence as the reward

Define Reward with a Single Demo

- Reward: the distance to the demo trajectory in an embedding space
- The embedding space can be learned

$$r_{ ext{imitation}} = egin{cases} 0.5 & ext{if } ar{\phi}(v_{ ext{agent}}) \, \cdot \, ar{\phi}(v_{ ext{checkpoint}}) > lpha \ 0.0 & ext{otherwise} \end{cases}$$

Figures from Playing hard exploration games by watching YouTube

Define Reward with a Single Demo

- Reward: the distance to the demo trajectory in an embedding space
- The embedding space can be manually defined

Figures from Peng, Xue Bin, et al. "Learning agile robotic locomotion skills by imitating animals."

Match the Distribution of Demo

- Reward: the divergence between agent trajectories and demo
 - Usually needs to be approximated due to the computation cost
- This is actually the idea behind most inverse RL methods

Algorithm 1: Template for IRL
Input: $\mathcal{M}_{R_E} = \langle S, A, T, \gamma \rangle$,
Set of trajectories demonstrating desired behavior:
$\mathcal{D}=\{\langle (s_0,a_0),(s_1,a_1),\ldots,(s_t,a_t) angle,\ldots\},s_t\in S,a_t\in A,t\in\mathbb{N},$
or expert's policy: π_E , and reward function features
Output: \hat{R}_E
1 Model the expert's observed behavior as the solution of an MDP whose
reward function is not known;
2 Initialize the parameterized form of the reward function using any given
features (linearly weighted sum of feature values, distribution over
rewards, or other);
3 Solve the MDP with current reward function to generate the learned
behavior or policy;
4 Update the optimization parameters to minimize the divergence between
the observed behavior (or policy) and the learned behavior (policy);
5 Repeat the previous two steps till the divergence is reduced to a desired
level.

Algorithm from Arora, Saurabh, and Prashant Doshi. "A survey of inverse reinforcement learning: Challenges, methods and progress."

Match the Distribution of Demo

- GAIL (Generative adversarial imitation learning)
 - Reward is Jensen-Shannon divergence, implemented similar to GANs
 - Generator: policy $\pi(a|s)$
 - Discriminator: predicts (s, a) from agent or demo
 - Discriminator has to predict source of (s, a), generator tries to fool

discriminator by generating actions that look like the demo distribution

Algorithm 1 Generative adversarial imitation learning

1: Input: Expert trajectories $\tau_E \sim \pi_E$, initial policy and discriminator parameters θ_0, w_0

2: for
$$i = 0, 1, 2, \dots$$
 do

- 3: Sample trajectories $\tau_i \sim \pi_{\theta_i}$
- \therefore Update the discriminator parameters from w_i to w_{i+1} with the gradient

$$\hat{\mathbb{E}}_{\tau_i}[\nabla_w \log(D_w(s,a))] + \hat{\mathbb{E}}_{\tau_E}[\nabla_w \log(1 - D_w(s,a))]$$
(17)

5: Take a policy step from θ_i to θ_{i+1} , using the TRPO rule with cost function $\log(D_{w_{i+1}}(s, a))$. Specifically, take a KL-constrained natural gradient step with

$$\hat{\mathbb{E}}_{\tau_i} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) Q(s,a) \right] - \lambda \nabla_{\theta} H(\pi_{\theta}),$$
where $Q(\bar{s}, \bar{a}) = \hat{\mathbb{E}}_{\tau_i} \left[\log(D_{w_{i+1}}(s,a)) \mid s_0 = \bar{s}, a_0 = \bar{a} \right]$
(18)

6: end for

Algorithm from Ho, Jonathan, and Stefano Ermon. "Generative adversarial imitation learning."

Demo as Curriculum of Start States

- Assume the environment is a simulator that we can fully control
- Reset to the states in demo, and start to explore from there
 - Uniformly sample states in demo as the start states

Figures from Peng, Xue Bin, et al. "Deepmimic: Example-guided deep reinforcement learning of physics-based character skills."

Demo as Curriculum of Start States

- Assume the environment is a simulator that we can fully control
- Reset to the states in demo, and start to explore from there
 - Or start from the end of the demo, and gradually go backwards

Figures from Salimans, Tim, and Richard Chen. "Learning montezuma's revenge from a single demonstration."

Outline

- Use Demonstrations
 - Offline without interactions with environments
 - Online with interactions with environments
- Collect Demonstrations
- Future Directions

- Use Embodied AI as an example domain
 - Demo can be collected in various ways
 - By human or by robots
 - In simulators or in the real world
 - One of the most popular domains to use demonstrations
- Focus on acquiring expert demonstrations
 - · Non-expert demo are relatively easy to get

- Embodiment: the "physical body" of the agent
- Operator: the "brain" to control the agent

Operator Embodiment	Robot	Human
Robot	\checkmark	~
Human	×	\checkmark

Figures from WALL·E

- Embodiment: the "physical body" of the agent
- Operator: the "brain" to control the agent

Teleoperation – Basic Devices

Keyboard + Mouse (Many Simulation Environments)

Video from Mandlekar, Ajay, et al. "Roboturk: A crowdsourcing platform for robotic skill learning through imitation."

Multi-Arm RoboTurk (MART): Collaborative Teleoperation

Smartphone (RoboTurk)

Teleoperation – Virtual Reality

• VR is widely adopted in many simulation environments

VR Interface

Cooking Onion

Headset + Regular Hand Controllers (iGibson 2) Headset + Motion Capture Gloves (RFUniverse)

Figure and video from iGibson 2.0 and RFUniverse

Teleoperation – Virtual Reality

• VR is also used when collecting robot demo in the real world

VR remotes + joystick (RT-1)

Video from Brohan, Anthony, et al. "RT-1: Robotics Transformer for Real-World Control at Scale."

- Embodiment: the "physical body" of the agent
- Operator: the "brain" to control the agent

Autonomous System – Planning

• Use planners to generate demo (assume world model is known)

Symbolic Planner for High-level Tasks (ALFRED)

Motion Planner for Low-level Tasks (RLBench)

Figures from

Autonomous System – Learning

- Learning-based methods
- Design different methods for different tasks

RL alone is already enough for many tasks

Waypoint generator + Goalreaching policy from RL

DAPG + a few human demo

Autonomous System – Self-supervised

Self-supervised system in the real world

- QT-opt
- Run RL in the real world
- Vision system to get a sparse reward

Video from Kalashnikov, Dmitry, et al. "Scalable deep reinforcement learning for vision-based robotic manipulation."

Autonomous System – Self-supervised

• MT-Opt

- Reset by special boxes
- Success detectors trained on data from all tasks
- Use the solutions to easier tasks to bootstrap learning of more complex tasks

- Embodiment: the "physical body" of the agent
- Operator: the "brain" to control the agent

Human Demo Datasets

• Ego4D

• Ego-centric, multi-modal dataset of human activities

Figures from Grauman, Kristen, et al. "Ego4d: Around the world in 3,000 hours of egocentric video."

Human Demo Datasets

- RoboTube
 - Human video dataset + its digital twin in simulation environment

Figures from Fu, Haoyuan, et al. "RoboTube: Learning Household Manipulation from Human Videos with Simulated Twin Environments."

Outline

- Use Demonstrations
 - Offline without interactions with environments
 - Online with interactions with environments
- Collect Demonstrations
- Future Directions

Outline

- Background
- Use Demonstrations
 - Offline without interactions with environments
 - Online with interactions with environments
- Future Directions

Future Directions

- Scale up demo collection
 - Teleoperation-based approaches
 - Pros: provides high-quality and diverse demo
 - · Cons: very costly, hard to scale up
 - Learning-based autonomous data collection pipelines
 - · Pros: generates unlimited data, easier to scale up
 - Cons: not strong enough to solve some complex tasks, quality of demo is an issue
 - Combine them together?
 - · Human-in-the-loop autonomous system which improves itself over time?
 - Still a long way to go...

Future Directions

- What kinds of demo do we really need?
 - Quality: always need near-optimal demo?
 - Modality: learn robot policies from videos and language descriptions?
 - Embodiment: learn robot policies from human?
 - Content: always need actions? rewards?
 - ...

Future Directions

- Combine offline learning from demo with online learning
 - Though there have been several preliminary attempts, the problem is still not solved yet
 - · Demo can come in different forms and different qualities
 - Solutions might need to be designed for each different scenario
 - An interesting problem to study
 - Low to learn from non-optimal, cross-domain, partially observed demonstrations
 - · This kind of demo is what we usually get in the real world

Thank you!