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Robot: Multi-Body System



Link and Joint

Link:
- Links are interconnected rigid bodies
- Usually a chain (one parent)

Joint:
- Joints are the connectors between links. They
determine the DoF of motion between adjacent links




Base Link and End-Effector Link

» Base (Root) link:

- The first link

- Regarded as the “fixed” reference

- The spatial frame &  is attached to it
« End-effector link

- The last link (e.g., gripper)

- Aframe &, is attached to it



Two Common Joint Types

* Revolute/Hinge/Rotational joint

% Revolute
g (R)

* Prismatic/Translational joint

— A t——
— J—— Prismatic
(P)




Kinematics:
The Geometry of Motion

« Kinematics: describing the motion of bodies (position
and velocity) without considering the forces that
cause them to move




Kinematic Configuration

» Assuming frames are assigned to each link, we can
parameterize the pose of each joint

- Using the relative angle and translation between
adjacent frames




Kinematic Configuration

« Two representations of the end-effector pose

- Joint space: The space in which each coordinate
IS a vector of joint poses (angles around joint axis)

- Cartesian space: The space of the rigid
transformations of the end-effector by (R__ ,t._ ),

S—e’ “s—e
where & , is the end-effector frame



Kinematics Equations

* “Define how input movement at one or more joints
specifies the configuration of the device, in order to
achieve a task position or end-effector location.”

. Map the joint space coordinate 8 € R" to a
transformation matrix 7"

I.=f0)

 Calculated by composing transformations along the
Kinematic chain

https://en.wikipedia.org/wiki/Kinematics equations 10



https://en.wikipedia.org/wiki/Kinematics_equations
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Inverse Kinematics

. Given the forward kinematics T,_, ,(€) and the target
pose 1,

arger = SE(3), find solutions 6 that satisfy
T, (0) = Ttarget

12



Inverse Kinematics

xElbowRight = TRUE xElbowRight = FALSE

Solutions may not be unique

https://product-help.schneider-electric.com/Machine%20Expert/V1.2/en/ 13
codesys softmotion/topics/ sm_configure kinematics.htm



https://product-help.schneider-electric.com/Machine%20Expert/V1.2/en/codesys_softmotion/topics/_sm_configure_kinematics.htm
https://product-help.schneider-electric.com/Machine%20Expert/V1.2/en/codesys_softmotion/topics/_sm_configure_kinematics.htm

How to Relate the Motion in Joint
Space and Cartesian Space?

. Q1 (Forward Kinematics): If the robot moves by A& in
the joint space, how much will the end-effector move
in the Cartesian space?

« Q2 (Inverse Kinematics): If the robot would move the
end-effector by Ax in the Cartesian space, how shall
it change its joint poses?

14



Differentiability of Transformation

I, = f(0)
- ts—e(t) T f(e) s—e(t+Ar) — f(e + AH)
- T ornry = Tsmey = S0 + A0) — f(0)

« We will study the differentiability of rigid
transformations, starting from rotations

15



SO(3) and SE(3)




Rotation in R°

3 Degree of Freedoms

17




SO(3): The Space of Rotations

. SO(n) = {R € R™" : det(R) = 1,RR! = 1)

- SO(n): “Special Orthogonal Group”
- “Group”: roughly, closed under matrix multiplication
- “Orthogonal”: RR! =1
- “Special”: det(R) = 1

« Examples:
- SO(2): 2D rotations, 1 DoF
- SO(3): 3D rotations, 3 DoF

18



SE(3): The Space of Rigid Transformations

)[Rt
: S[E(B)._{T_[O ,

- SE(3): “Special Euclidean Group”
- “Group”: roughly, closed under matrix multiplication
- “Euclidean™ R and t
- “Special”: det(R) =1

R € SOQR),t e u@}

« SE(3) has 6 DoF

19



- We need some theoretical understanding of SO(3)
and S[E(3)

- Parameterization

- Topological structure

20



Axis-Angle Representation



Euler’s Rotation Theorem

- Any composition of rotations (in 3D space) is
equivalent to a single rotation about a fixed axis
® € R’ (||@|| = 1) through a positive angle 6

- @: unit vector of rotation axis

- 0: angle of rotation

- |t indicates that the set of rotations has a group
structure

- R € SO(3) := Rot(w, 0)

https://en.wikipedia.org/wiki/Euler%27s _rotation theorem 22



https://en.wikipedia.org/wiki/Euler%27s_rotation_theorem

Given @ and 0, what is R € SO(3)?



Skew-Symmetric Matrix

. A is skew-symmetricA = — A!

- Skew-symmetric matrix operator:

a; | 0 —-a; a
a= |BQ|,lal:=1a3 0 —q
_a3_ —Cl2 al 0

 Cross product can be a linear transformation

-aXb=1lalb

24



Given @ and 0, what is R € SO(3)?

. We can show that, for any x € R’
Rot(@,0)x =x+ (sn@)o X x+ (1 —cos@)@d X (@ X x)

= {I+ [®]sin0 + [®]*°(1 —cosN}x (1)

Derivation: https://en.wikipedia.org/wiki/Rotation matrix 25



https://en.wikipedia.org/wiki/Rotation_matrix

lllustration

V=V +Y

v,= k(kv) ety
v.= ~kx(lov) = v - k(kv) P

Vv Y S

k € R3 is the rotation axis
v € R3 is the vector to rotate
y. . € R is the vector rotated

https://en.wikipedia.org/wiki/Rodrigues%27 rotation formula 26



https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula

Given @ and 0, what is R € SO(3)?

. We can show that, for any x € R’
Rot(@,0)x =x+ (sn@)o X x+ (1 —cos@)@d X (@ X x)

= {I+ [®]sin0 + [®]*°(1 —cosN}x (1)

. By Taylor’s expansion of sin, cos, [®]’ = — [@], and

above
92 93
Rot(®, O)x = (I + 60[d] + E[@]Z + ;[@13 4+ - )x

Derivation: https://en.wikipedia.org/wiki/Rotation matrix 27



https://en.wikipedia.org/wiki/Rotation_matrix

Given @ and 0, what is R € SO(3)?

. We can show that, for any x € R’
Rot(@,0)x =x+ (sn@)o X x+ (1 —cos@)@d X (@ X x)

= {I+ [®]sin0 + [®]*°(1 —cosN}x (1)
. By Taylor’s expansion of sin, cos, [®]° = — [®], and

above
92 93
Rot(®, O)x = (I + 60[d] + E[@]Z + ;[@13 4 - )x

 Recall Taylor’s expansion of exponential,

L, 15
e'=1+x+—x"+—x"+ -
2! 3!

Derivation: https://en.wikipedia.org/wiki/Rotation matrix 28



https://en.wikipedia.org/wiki/Rotation_matrix

Given @ and 0, what is R € SO(3)?

. We can show that, for any x € R’
Rot(@,0)x =x+ (sn@)o X x+ (1 —cos@)@d X (@ X x)

= {I+ [®]sin0 + [®]*°(1 —cosN}x (1)
. By Taylor’s expansion of sin, cos, [®]’ = — [@], and

above
92 93
Rot(®, O)x = (I + 60[d] + g[@]Z + ;[@13 4 - )x

 Recall Taylor’s expansion of exponential,

L, 15
e'=1+x+—x"+—x"+ -
2! 3!

» Formally, we have:
Rot(®, O)x = e!®Vx, Vx € R?

Derivation: https://en.wikipedia.org/wiki/Rotation matrix 29



https://en.wikipedia.org/wiki/Rotation_matrix

Given @ and 0, what is R € SO(3)?

- By Rot(®, O)x = e!®Px, Vx € R,
Rot(d, 0) = l®1?

« This is under such a Definition of Matrix

Exponential:
) 62 6’
el?V = I+ 0[&] + 5[@12 - ;[@]3 + -

30



Given @ and 0, what is R € SO(3)?

. In the angle-axis representation, Rot(®, 0) = ¢!

- 0 = @0 is also called the rotation vector, or
exponential coordinate

31



Rodrigues Formula

» Definition of Matrix Exponential:
A ST LR
[0]0 _ A — [ — I
e —I+9[a)]+2![a)] +3![a)] +
- Sum of infinite series? Rodrigues Formula
. Can prove that [@]° = — [@]
- Then, use Taylor expansion of sin and cos

- el = 14 [®]sin @ + [®]*(1 — cos )

32



Given R € SO(3), what is @ and 6?

* Is there a unique parametrization?

33



Given R € SO(3), what is @ and 6?

* Is there a unique parametrization? No!
1. (@, 0) and (— @, — 0) give the same rotation
2.when R = I, @ = 0 and @ can be arbitrary

3. (w, m) and (—w, x) give the same rotation
(tr(R) = — 1)

34



Given R € SO(3), what is @ and 6?

. If we restrict @ € (0,7), a unique parameterization
exists:

(R—R")

1
0 = —[tr(R) — 1], [@] =
arccos 2[r( )—1], [w] S g

35



Distance between Rotations

« How to measure the distance between rotations
(RlaRZ)?

« A natural view is to measure the (minimal) effort to
rotate the body at R, pose to R, pose:

Z| Y
" (RyRR, =R, g

- dist(R;, Ry)) = O(R,R]) 3

1
= arccos E[tr(RleT ) — 1]

36



Quaternion

Note: In this section, ¥ € R? and ¢ € R*



Complex Number

. Recall the complex number a + bi

- ais the real part and 1 is the imaginary part

Imaginary: i2=—1 Im | ety
, ;

Conjugate: a — bl

Absolute value: \/Cl2 + b /Y

https://en.wikipedia.org/wiki/Complex number 38



https://en.wikipedia.org/wiki/Complex_number

Quaternion is a “Number”

. Recall the complex number a + bi
 Quaternion is a more generalized complex number:
g=w+xi+yj+zk

- wis the real part and v = (x, y, 7) is the imaginary
part

. Imaginary: i’ =j? =k’ =ijk = -1
- anti-commutative :

ij=k=—ji, jk=i=—kj, ki = j = — ik

39



Properties of General Quaternions

. Vector form: g = (w, V)
» Product:

- FOI’ ql = (Wl’ 31) and Q2 — (Wz, 32),
_ —>T—> - - - -
q19, = (W Wy — V Vo, Wy + Wyvy + V| X V)
- Not commutable (note that v, X V5 # v, X V)
. Conjugate: g* = (w, — V)
i 2 2 =>T-= % .k
. Norm: ||g||" = w”+ V'V = gq* = g*q

a1
- Inverse: g = TE
q

40



Unit Quaternion as Rotation

. A unit quaternion Hq” = 1 can represent a rotation
- Four numbers plus one constraint — 3 DoF

» Geometrically, the shell of a 4D sphere

41



Build Rotation Quaternion

« Exponential coordinate — Quaternion:

g = [cos(6/2), sin(6/2)d]

« Quaternion is very close to angle-axis representation!

« Exponential coordinate «— Quaternion:

1
6 = 2 arccos(w), o =1 sin@/2) %0

0 0=0




Unit Quaternion as Rotation

. Rotate a vector X by a quaternion g:
1. Augment X to x = (0,X)

2. x' = gxq~!

- Compose rotations by quaternion:

- (92(q1xq7)q;): first rotate by g, and then by g,

- Since (92(91%q7°)q;) = (4291)%(q;°q5),
composing rotations is as simple as multiplying
quaternions!

43



Conversation between
Quaternion and Rotation Matrix

- Rotation <« Quaternion

R(@) = E@Q)G(@)"
where E(g) = [wl + [V], — V] and
G(q) = [wl - [V], = V]

- Rotation — Quaternion
- Rotation — Angle-Axis — Quaternion

44



Double Covering

- Each rotation corresponds to two quaternions
(“double-covering”): g and —¢q

45



More about Quaternion

« Quaternion is computationally cheap:

- Internal representation of Physical Engine and
Robot

« Pay attention to convention (w, X, y, z) or (X, Yy, Z, W)

- (w, X, Y, 2): SAPIEN, transforms3d, Eigen, blender,
MudoCo, V-Rep

- (X, Y, z, w): ROS, PhysX, PyBullet

46



Summary of Quaternion

 Very useful and popular in practice

» 4D parameterization, compact and efficient to
compute

47



Euler Angles



Euler Angles are Intuitive

https://www.programmersought.com/article/8900590257/



Euler Angle to Rotation Matrix

- Rotation about principal axis is represented as:
1 0 0

R(a):= |0 cosa —sina
0 sina cosa _
cosffp 0 sinp

0 1 O
—smmfp 0 cosp
cos y —siny 0

R(p) :

R(y) == |siny cosy O
0 0 1
* R = R()R,()R,(y) for arbitrary rotation

50



Euler Angles are not Unique

 Euler angles are not unique for some rotations.
» For example,
R(45°)R,(90°)R (45°) = R (90")R(90°)R,(90°)

0 0 1
0O 1 0
-1 0 O.

51



Gimbal Lock

 “Gimbal lock is the loss of one degree of freedom in a
multi-dimensional mechanism at certain alignments of
the axes.”

hitps://en wikipedia,org/wiki/Gimbal_lock 52 Read by Yourself


https://en.wikipedia.org/wiki/Gimbal_lock

Gimbal Lock

- For example: When ff = 7/2,
R = R ()R (n/2)R\(y)
0 0 1
= | sinfla+y) cos(a+y) O
—cos(a+y) sin(a+y) O

since changing a and y has the same effects, a
degree of freedom disappears!

https://www.mecademic.com/resources/Euler-angles/Euler-

angles 53 Read by YOUfSG/f



Summary of Euler Angles

* Euler angles can parameterize every rotation and has
good interpretability

» It is not a unique representation at some points
* There are some points where not every change in the

target space (rotations) can be realized by a change in
the source space (Euler angles)

54



Summary of
Rotation Representations

Inverse? Composing?
Rotation Matrix v v/
Euler Angle Complicated Complicated
Angle-axis v Complicated
Quaternion s/ v

55




Libraries

* Python
- spicy.spatial.transform.Rotation
- transforms3d

- pytransform3d
* Machine learning (PyTorch): kornia, pypose

« C/C++: Eigen, ceres

56



Challenges in Parameterizing
SO(3)



Parameterization

. R € SO(3) is recorded by real numbers

« Parameterization is the mapping between R¢ and

SOQ3):
f(9) — R@

58 Read by Yourself



Prerequisite: Topology

 Topology: Structural Properties of a Manifold

(e

. Two surfaces M and N are topologically equivalent if
there is a differentiable bijection between M and N

@

Read by Yourself



Prerequisite: Topology
* More examples:

Sy

SPL re

@fﬁ

" e wﬁ

)z

60 Read by Yourself



Topology of SO(n)

. The topology of SO(2) is the same as a circle

Z

61 Read by Yourself



Topology of SO(n)

. Circles do not have the same topology as (—1,1)"

—> No differentiable bijections between SO(2) and
(—L1)"

» The topology of SO(3) is also different from (—1,1)"

62 Read by Yourself



Parameterizing Rotations is Tricky

. Although SO(3) only has 3 DoF, you cannot build a
differentiable bijection between SO(3) and any

subset of R°>

. Even parameterizing SO(3) by R? with d > 3,
« we cannot build differentiable bijections with
(_ 1? 1)d
* we have to either introduce constraints, or bear with
singularities and the “multi-cover” issue

* The challenge brings a lot of trouble to optimization
and learning

63 Read by Yourself



Rotation Parameterization for
Neural Networks

« Zhou, Yi, et al. "On the continuity of rotation
representations in neural networks." Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition. 2019.

 Xiang, Sitao, and Hao Li. "Revisiting the continuity of

rotation representations in neural networks." arXiv
preprint arXiv:2006.06234 (2020).

64 Read by Yourself



Local Structure of SO(3)



Local Structure of SO(3)

» Definition of Matrix Exponential:
6° 0’

o0 =1+ 0[0] + o) + o] +
e (@] X (@] 3'[ w]” +

* Note:

. B = e4eB only when AB — BA = ()
. When 8 ~ 0, ¢!l = [ + 9[®] + o(0[D])

66 Read by Yourself



Local Structure of SO(3)

. By e!?V = [ + 9[®] + 0(A[@]) when 0 ~ 0,

el? — 1 =[] + o([6])

* Interpretation:

- [5] forms linear subspace of R

-e[é]—>las[5]—>()

- Any local movement in SO(3) around /, which is
~ el%l — I can be approximated by [6]

. The set of [5] forms the tangent space of SO(3) at /
67 Read by Yourself



Lie algebra 30(3) of SO(3)

. The set of [5] is the tangent space of SO(3) atR =1

- Ex: What is the tangent space at any R € SO(3)?
- el _ [ = [0] + o([0]), . e'YR — R = [A]R + o([6])
» i.e., VR € SOQ3) near R, 36 € R3suchthat R’ ~ R + [5]R

. So the tangent space at Ris {SR : S € R¥3, T = — S}
. We give this set a name, the “Lie algebra of SO(3)”
- 30(3):={SeR>*: 5T =-8)

68 Read by Yourself



Why called “algebra™?

. Introducing Lie bracket [A, B] = AB — BA, and the
set of skew-symmetric matrices are closed under this
binary operator

* Then, the set of skew-symmetric matrices form an
“algebra”, because

- The set is closed under Lie bracket

- Left and right distributive law are satisfied under Lie
bracket

69 Read by Yourself



Tutorial for Lie Algebra

« Sola, Joan, Jeremie Deray, and Dinesh Atchuthan. "A
micro Lie theory for state estimation in robotics." arXiv
preprint arXiv:1812.01537 (2018).

70 Read by Yourself



