

Machine Learning for Robotics

Rotation

Jiayuan Gu

Slides prepared by Prof. Hao Su with the help of Yuzhe Qin, Minghua Liu, Fanbo Xiang, Jiayuan Gu

Agenda

- Robot: Multi-Body System
- Math about Rotation: $\mathbb{SO}(3)$ and $\mathbb{SE}(3)$
- Representations of Rotation
	- Axis-Angle
	- Quaternions
	- Euler Angles
- Local Structure of $\mathbb{SO}(3)$

Robot: Multi-Body System

Link and Joint

Link:

- **Links** are interconnected rigid bodies
- Usually a chain (one parent)

Joint:

- Joints are the connectors between links. They determine the DoF of motion between adjacent links

Base Link and End-Effector Link

- Base (Root) link:
	- The first link
	- Regarded as the "fixed" reference
	- The spatial frame ${\mathscr F}_s$ is attached to it
- End-effector link
	- The last link (e.g., gripper)
	- A frame $\overline{\mathscr{F}}_{e}$ is attached to it

Two Common Joint Types

• Revolute/Hinge/Rotational joint

• Prismatic/Translational joint

Kinematics: The Geometry of Motion

• Kinematics: describing the **motion** of bodies (position and velocity) **without considering the forces** that cause them to move

Kinematic Configuration

- Assuming frames are assigned to each link, we can parameterize **the pose of each joint**
	- Using the relative **angle** and **translation** between adjacent frames

Kinematic Configuration

- Two representations of the end-effector pose
	- **Joint space:** The space in which each coordinate is a vector of joint poses (**angles** around **joint axis**)
	- **Cartesian space:** The space of the rigid transformations of the end-effector by $(R_{s\rightarrow e}, \mathbf{t}_{s\rightarrow e}),$ where \mathscr{F}_e is the end-effector frame

Kinematics Equations

• "Define how **input movement** at one or more joints specifies the configuration of the device, in order to **achieve a task position** or end-effector location."

• Map the joint space coordinate $\theta \in \mathbb{R}^n$ to a transformation matrix T :

$$
T_{s\to e} = f(\theta)
$$

• Calculated by composing transformations along the kinematic chain

base end_effector

$$
T_{0\to 3}^0 = T_{0\to 1}^0 T_{1\to 2}^1 T_{2\to 3}^2 = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 & 0 & -\sin \theta_1 (l_2 + l_3) \\ \sin \theta_1 & \cos \theta_1 & 0 & \cos \theta_1 (l_2 + l_3) \\ 0 & 0 & 1 & l_1 - l_4 + \theta_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}
$$

Inverse Kinematics

• Given the forward kinematics $T_{s\rightarrow e}(\theta)$ and the target pose $T_{target} = \mathbb{SE}(3)$, find solutions θ that satisfy $T_{s\rightarrow e}(\theta) = T_{target}$

Inverse Kinematics

Solutions may not be unique

How to Relate the Motion in Joint Space and Cartesian Space?

• Q1 (Forward Kinematics): If the robot moves by $\Delta\theta$ in the joint space, how much will the end-effector move in the Cartesian space?

• Q2 (Inverse Kinematics): If the robot would move the end-effector by Δx in the Cartesian space, how shall it change its joint poses?

Differentiability of Transformation

• $T_{s\rightarrow e} = f(\theta)$

$$
T_{s\to e(t)} = f(\theta), T_{s\to e(t+\Delta t)} = f(\theta + \Delta \theta)
$$

$$
T_{s\to e(t+\Delta t)} - T_{s\to e(t)} = f(\theta + \Delta \theta) - f(\theta)
$$

• We will study the differentiability of rigid transformations, starting from rotations

$SO(3)$ and $SE(3)$

Rotation in \mathbb{R}^3

3 Degree of Freedoms

(3)**: The Space of Rotations**

- $\mathbb{S}\mathbb{O}(n) = \{R \in \mathbb{R}^{n \times n} : \det(R) = 1, RR^T = I\}$
- $\mathbb{SO}(n)$: "Special Orthogonal Group"
	- "Group": roughly, closed under matrix multiplication
	- "Orthogonal": $RR^T = I$
	- "Special": $\det(R) = 1$
- Examples:
	- $SO(2)$: 2D rotations, 1 DoF
	- $SO(3)$: 3D rotations, 3 DoF

(3)**: The Space of Rigid Transformations**

•
$$
\mathbb{SE}(3) := \left\{ T = \begin{bmatrix} R & \mathbf{t} \\ 0 & 1 \end{bmatrix}, R \in \mathbb{SO}(3), \mathbf{t} \in \mathbb{R}^3 \right\}
$$

- SE(3): "Special Euclidean Group"
	- "Group": roughly, closed under matrix multiplication
	- "Euclidean": R and t
	- "Special": $\det(R) = 1$
- $\mathbb{SE}(3)$ has 6 DoF
- We need some theoretical understanding of $SO(3)$ and $\mathbb{SE}(3)$
	- Parameterization
	- Topological structure

Axis-Angle Representation

Euler's Rotation Theorem

- Any composition of rotations (in 3D space) is equivalent to a single rotation about a fixed axis $\hat{\omega} \in \mathbb{R}^3$ ($\|\hat{\omega}\| = 1$) through a positive angle
	- $\hat{\omega}$ **: unit vector of rotation axis**
	- \cdot θ : angle of rotation

• It indicates that the set of rotations has a group structure

•
$$
R \in \mathbb{SO}(3) := \text{Rot}(\hat{\omega}, \theta)
$$

Skew-Symmetric Matrix

- A is skew-symmetric $A = -A^T$
- Skew-symmetric matrix operator:

$$
a = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}, [a] := \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}
$$

• Cross product can be a linear transformation

$$
a \times b = [a]b
$$

• We can show that, for any $x\in\mathbb{R}^3$ $\text{Rot}(\hat{\omega}, \theta)x = x + (\sin \theta)\hat{\omega} \times x + (1 - \cos \theta)\hat{\omega} \times (\hat{\omega} \times x)$

 $= {I + [\hat{\omega}]\sin\theta + [\hat{\omega}]^2(1 - \cos\theta)}x$ (1)

Illustration

 $V = V_1 + V_2$

 $v_i = k(k \cdot v)$

 $v = -k \times (k \times v) = v - k(k \cdot v)$

 $k \times 0.2 - 0.080$ ⊗ الأي
مون
مؤ \mathbf{V}_{rot} k_{χ} α_{χ} Virot 'V. k∙v **RAY SWAP** A $\frac{1}{2}$ COS θ

 $k \in \mathbb{R}^3$ is the rotation axis $v \in \mathbb{R}^3$ is the vector to rotate $v_{rot} \in \mathbb{R}^3$ is the vector rotated

• We can show that, for any $x\in\mathbb{R}^3$ $\text{Rot}(\hat{\omega}, \theta)x = x + (\sin \theta)\hat{\omega} \times x + (1 - \cos \theta)\hat{\omega} \times (\hat{\omega} \times x)$

 $= {I + [\hat{\omega}]\sin\theta + [\hat{\omega}]^2(1 - \cos\theta)}x$ (1)

• By Taylor's expansion of **sin**, **cos**, $[\hat{\omega}]^3 = -[\hat{\omega}]$, and above

$$
Rot(\hat{\omega}, \theta)x = (I + \theta[\hat{\omega}] + \frac{\theta^2}{2!}[\hat{\omega}]^2 + \frac{\theta^3}{3!}[\hat{\omega}]^3 + \cdots)x
$$

• We can show that, for any $x\in\mathbb{R}^3$ $\text{Rot}(\hat{\omega}, \theta)x = x + (\sin \theta)\hat{\omega} \times x + (1 - \cos \theta)\hat{\omega} \times (\hat{\omega} \times x)$

 $= {I + [\hat{\omega}]\sin\theta + [\hat{\omega}]^2(1 - \cos\theta)}x$ (1)

• By Taylor's expansion of **sin**, **cos**, $[\hat{\omega}]^3 = -[\hat{\omega}]$, and above

$$
Rot(\hat{\omega}, \theta)x = (I + \theta[\hat{\omega}] + \frac{\theta^2}{2!}[\hat{\omega}]^2 + \frac{\theta^3}{3!}[\hat{\omega}]^3 + \cdots)x
$$

• Recall Taylor's expansion of exponential,

$$
e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \cdots
$$

• We can show that, for any $x\in\mathbb{R}^3$ $\text{Rot}(\hat{\omega}, \theta)x = x + (\sin \theta)\hat{\omega} \times x + (1 - \cos \theta)\hat{\omega} \times (\hat{\omega} \times x)$

 $= {I + [\hat{\omega}]\sin\theta + [\hat{\omega}]^2(1 - \cos\theta)}x$ (1)

• By Taylor's expansion of **sin**, **cos**, $[\hat{\omega}]^3 = -[\hat{\omega}]$, and above

$$
Rot(\hat{\omega}, \theta)x = (I + \theta[\hat{\omega}] + \frac{\theta^2}{2!}[\hat{\omega}]^2 + \frac{\theta^3}{3!}[\hat{\omega}]^3 + \cdots)x
$$

• Recall Taylor's expansion of exponential,

$$
e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \cdots
$$

• Formally, we have:

$$
\text{Rot}(\hat{\omega}, \theta)x = e^{[\hat{\omega}]\theta}x, \forall x \in \mathbb{R}^3
$$

• By Rot $(\hat{\omega}, \theta)x = e^{[\hat{\omega}]\theta}x, \forall x \in \mathbb{R}^3$,

 $Rot(\hat{\omega}, \theta) \equiv e^{[\hat{\omega}]\theta}$

• This is under such a **Definition of Matrix Exponential**:

$$
e^{[\hat{\omega}]\theta} = I + \theta[\hat{\omega}] + \frac{\theta^2}{2!}[\hat{\omega}]^2 + \frac{\theta^3}{3!}[\hat{\omega}]^3 + \cdots
$$

- In the angle-axis representation, $\text{Rot}(\hat{\omega}, \theta) = e^{[\hat{\omega}]\theta}$
- \cdot $\theta = \hat{\omega}\theta$ is also called the **rotation vector**, or **exponential coordinate**

Rodrigues Formula

- Definition of Matrix Exponential: $e^{[\hat{\omega}]\theta} = I + \theta[\hat{\omega}] +$ θ^2 2! $[\hat{\omega}]^2 +$ *θ*3 3! $\left[\hat{\omega}\right]^3 + \cdots$
- Sum of infinite series? **Rodrigues Formula**
	- Can prove that $[\hat{\omega}]^3 = -[\hat{\omega}]$
	- Then, use Taylor expansion of **sin** and **cos**
	- $-e^{[\hat{\omega}]\theta} = I + [\hat{\omega}]\sin\theta + [\hat{\omega}]^2(1 \cos\theta)$

Given $R \in \mathbb{SO}(3)$, what is $\hat{\omega}$ and θ ?

• Is there a **unique** parametrization?

Given $R \in \mathbb{SO}(3)$, what is $\hat{\omega}$ and θ ?

- Is there a **unique** parametrization? No!
	- 1. $(\hat{\omega}, \theta)$ and $(-\hat{\omega}, -\theta)$ give the same rotation ̂ ̂
	- 2. when $R = I$, $\theta = 0$ and $\hat{\omega}$ can be arbitrary ̂
	- 3. $(\hat{\omega}, \pi)$ and $(-\hat{\omega}, \pi)$ give the same rotation $(tr(R) = -1)$ ̂ ̂

Given $R \in \mathbb{SO}(3)$, what is $\hat{\omega}$ and θ ?

• If we restrict $\theta \in (0,\pi)$, a unique parameterization exists:

$$
\theta = \arccos \frac{1}{2} [\text{tr}(R) - 1], \quad [\hat{\omega}] = \frac{1}{2 \sin \theta} (R - R^T)
$$

Distance between Rotations

- How to measure the distance between rotations (R_1, R_2) ?
- A natural view is to measure the (minimal) effort to rotate the body at R_1 pose to R_2 pose:

$$
\therefore (R_2 R_1^T) R_1 = R_2
$$

$$
\therefore \operatorname{dist}(R_1, R_2) = \theta(R_2 R_1^T)
$$

$$
= \arccos \frac{1}{2} [\operatorname{tr}(R_2 R_1^T) - 1]
$$

Quaternion

Note: In this section, $\vec{x} \in \mathbb{R}^3$ and $q \in \mathbb{R}^4$

Complex Number

- Recall the complex number $a + b\mathbf{i}$
	- a is the real part and $\mathbf i$ is the imaginary part
	- Imaginary: $\mathbf{i}^2 = -1$
	- Conjugate: *a* − *b***i**
	- Absolute value: $\sqrt{a^2 + b^2}$

Quaternion is a "Number"

- Recall the complex number $a + b\mathbf{i}$
- Quaternion is a more generalized complex number:

 $q = w + x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$

- w is the real part and $\vec{v} = (x, y, z)$ is the imaginary part

- Imaginary:
$$
\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{ijk} = -1
$$

- anti-commutative :

$$
ij = k = -ji, jk = i = -kj, ki = j = -ik
$$

Properties of General Quaternions

- Vector form: $q = (w, \vec{v})$
- Product:

- For
$$
q_1 = (w_1, \vec{v}_1)
$$
 and $q_2 = (w_2, \vec{v}_2)$,
\n $q_1 q_2 = (w_1 w_2 - \vec{v}_1^T \vec{v}_2, w_1 \vec{v}_2 + w_2 \vec{v}_1 + \vec{v}_1 \times \vec{v}_2)$

- Not commutable (note that $\vec{v}_1 \times \vec{v}_2 \neq \vec{v}_2 \times \vec{v}_1$) ⃗ ⃗
- Conjugate: $q^* = (w, -\vec{v})$
- Norm: $||q||^2 = w^2 + \vec{v}^T \vec{v} = qq^* = q^*q$

• Inverse:
$$
q^{-1} := \frac{q^*}{\|q\|^2}
$$

Unit Quaternion as Rotation

- $\boldsymbol{\cdot}$ A **unit** quaternion $\|\boldsymbol{q}\|=1$ can represent a rotation
	- Four numbers plus one constraint \rightarrow 3 DoF
- Geometrically, the shell of a 4D sphere

Build Rotation Quaternion

• Exponential coordinate \rightarrow Quaternion: $q = [\cos(\theta/2), \sin(\theta/2)\hat{\omega}]$

- Quaternion is very close to angle-axis representation!
- Exponential coordinate \leftarrow Quaternion:

$$
\theta = 2 \arccos(w), \qquad \hat{\omega} = \begin{cases} \frac{1}{\sin(\theta/2)} \vec{v} & \theta \neq 0\\ 0 & \theta = 0 \end{cases}
$$

Unit Quaternion as Rotation

• Rotate a vector \vec{x} by a quaternion q :

1. Augment
$$
\vec{x}
$$
 to $x = (0, \vec{x})$
2. $x' = qxq^{-1}$

- Compose rotations by quaternion:
	- $(q_2(q_1xq_1^*)q_2^*)$: first rotate by q_1 and then by q_2
	- Since $(q_2(q_1 xq_1^*)q_2^*) = (q_2 q_1)x(q_1^*q_2^*),$ composing rotations is as simple as multiplying quaternions!

Conversation between Quaternion and Rotation Matrix

• Rotation ← Quaternion

$$
R(q) = E(q)G(q)^{T}
$$

where $E(q) = [wI + [\vec{v}], -\vec{v}]$ and

$$
G(q) = [wI - [\vec{v}], -\vec{v}]
$$

- Rotation \rightarrow Quaternion
	- Rotation \rightarrow Angle-Axis \rightarrow Quaternion

Double Covering

• Each rotation corresponds to two quaternions ("double-covering"): q and $-q$

More about Quaternion

- Quaternion is computationally cheap:
	- Internal representation of Physical Engine and Robot
- Pay attention to convention (w, x, y, z) or (x, y, z, w)
	- (w, x, y, z): SAPIEN, transforms3d, Eigen, blender, MuJoCo, V-Rep
	- (x, y, z, w): ROS, PhysX, PyBullet

Summary of Quaternion

• Very useful and popular in practice

• 4D parameterization, compact and efficient to compute

Euler Angles

Euler Angles are Intuitive

Euler Angle to Rotation Matrix

• Rotation about principal axis is represented as:

$$
R_x(\alpha) := \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \\ \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}
$$

$$
R_z(\gamma) := \begin{bmatrix} \cos \gamma & 0 & 0 \\ \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$

$$
\cdot R = R_z(\alpha)R_y(\beta)R_x(\gamma) \text{ for arbitrary rotation}
$$

Euler Angles are not Unique

- Euler angles are not unique for some rotations.
- For example,

 $R_{z}(45^{\circ})R_{y}(90^{\circ})R_{x}(45^{\circ}) = R_{z}(90^{\circ})R_{y}(90^{\circ})R_{x}(90^{\circ})$ = [0 0 1 0 1 0 -1 0 0

Gimbal Lock

• "Gimbal lock is the loss of one degree of freedom in a multi-dimensional mechanism at certain alignments of the axes."

Gimbal Lock

• For example: When $\beta = \pi/2$, $R = R_z(\alpha)R_y(\pi/2)R_x(\gamma)$ = 0 0 1 $\sin(\alpha + \gamma) \quad \cos(\alpha + \gamma) \quad 0$ $-cos(\alpha + \gamma)$ sin($\alpha + \gamma$) 0

since changing α and γ has the same effects, a degree of freedom disappears!

https://www.mecademic.com/resources/Euler-angles/Euler-
53 angles

Summary of Euler Angles

- Euler angles can parameterize every rotation and has good interpretability
- It is not a unique representation at some points
- There are some points where not every change in the target space (rotations) can be realized by a change in the source space (Euler angles)

Summary of Rotation Representations

Libraries

• Python

- spicy.spatial.transform.Rotation
- transforms3d
- pytransform3d
- Machine learning (PyTorch): kornia, pypose
- C/C++: Eigen, ceres

Challenges in Parameterizing $SO(3)$

Parameterization

- $R \in \mathbb{SO}(3)$ is recorded by real numbers
- Parameterization is the mapping between \mathbb{R}^d and : (3)

$$
f(\theta) = R_{\theta}
$$

Prerequisite: Topology

• Topology: Structural Properties of a Manifold

• Two surfaces M and N are *topologically equivalent* if there is a **differentiable bijection** between M and N

Prerequisite: Topology

• More examples:

Topology of $\mathbb{SO}(n)$

• The topology of $\mathbb{SO}(2)$ is the same as a circle

Topology of $\mathbb{S}\mathbb{O}(n)$

- Circles do not have the same topology as $(-1,1)^n$ \implies No differentiable bijections between $\mathbb{SO}(2)$ and $(-1,1)^n$ $($ -1 1
- The topology of $\mathbb{SO}(3)$ is also different from $(-1,1)^n$

Parameterizing Rotations is Tricky

- Although $SO(3)$ only has 3 DoF, you cannot build a differentiable bijection between $\mathbb{SO}(3)$ and any subset of \mathbb{R}^3
- Even parameterizing $\mathbb{SO}(3)$ by \mathbb{R}^d with $d > 3$,
	- we cannot build differentiable bijections with $(-1,1)^d$
	- we have to either introduce constraints, or bear with singularities and the "multi-cover" issue
- The challenge brings a lot of trouble to optimization and learning

Rotation Parameterization for Neural Networks

- Zhou, Yi, et al. "On the continuity of rotation representations in neural networks." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.
- Xiang, Sitao, and Hao Li. "Revisiting the continuity of rotation representations in neural networks." arXiv preprint arXiv:2006.06234 (2020).

Local Structure of $SO(3)$

Local Structure of $SO(3)$

• Definition of Matrix Exponential:

$$
e^{[\hat{\omega}]\theta} = I + \theta[\hat{\omega}] + \frac{\theta^2}{2!}[\hat{\omega}]^2 + \frac{\theta^3}{3!}[\hat{\omega}]^3 + \cdots
$$

• Note:

 $e^{A+B} = e^{A}e^{B}$ only when $AB - BA = 0$

• When $\theta \approx 0$, $e^{[\hat{\omega}]\theta} = I + \theta[\hat{\omega}] + o(\theta[\hat{\omega}])$

Local Structure of $SO(3)$

• By $e^{[\hat{\omega}]\theta} = I + \theta[\hat{\omega}] + o(\theta[\hat{\omega}])$ when $\theta \approx 0$,

$$
e^{[\vec{\theta}]} - I = [\vec{\theta}] + o([\vec{\theta}])
$$

- Interpretation:
	- $[\vec{\theta}]$ forms linear subspace of $\mathbb{R}^{3\times 3}$ $\ddot{}$

-
$$
e^{[\vec{\theta}]}
$$
 \rightarrow I as $[\vec{\theta}]$ \rightarrow 0

- Any local movement in $SO(3)$ around *I*, which is $\approx e^{\left[\theta\right]} - I$, can be approximated by $[\vec{\theta}]$ ⃗ ⃗
- The set of $[\theta]$ forms the tangent space of $\mathbb{SO}(3)$ at I $\ddot{}$

p

T*p*

Lie algebra $\mathfrak{so}(3)$ of $\mathbb{SO}(3)$

- The set of $[\theta]$ is the tangent space of $\mathbb{SO}(3)$ at $R = I$ $\ddot{}$
	- Ex: What is the tangent space at any $R\in\mathbb{SO}(3)$?

$$
\therefore e^{[\vec{\theta}]} - I = [\vec{\theta}] + o([\vec{\theta}]), \therefore e^{[\vec{\theta}]}R - R = [\vec{\theta}]R + o([\vec{\theta}])
$$

- \rightarrow $\,$ i.e., $\forall R' \in \mathbb{SO}(3)$ near $R, \, \exists \vec{\theta} \in \mathbb{R}^3$ such that $R' \approx R + [\vec{\theta}]R$ $\ddot{}$
- \triangleright So the tangent space at R is $\{SR: S \in \mathbb{R}^{3 \times 3}, S^T = -S\}$
- We give this set a name, the "Lie algebra of $\mathbb{SO}(3)$ "

$$
\mathfrak{so}(3) := \{ S \in \mathbb{R}^{3 \times 3} : S^T = -S \}
$$

Why called "algebra"?

- Introducing Lie bracket $[A, B] = AB BA$, and the set of skew-symmetric matrices are closed under this binary operator
- Then, the set of skew-symmetric matrices form an "algebra", because
	- The set is closed under Lie bracket
	- Left and right distributive law are satisfied under Lie bracket

Tutorial for Lie Algebra

• Sola, Joan, Jeremie Deray, and Dinesh Atchuthan. "A micro Lie theory for state estimation in robotics." *arXiv preprint arXiv:1812.01537* (2018).