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Robot: Multi-Body System



Link and Joint
Link:

- Links are interconnected rigid bodies
- Usually a chain (one parent)

Joint: 
- Joints are the connectors between links. They 

determine the DoF of motion between adjacent links
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Base Link and End-Effector Link

• Base (Root) link: 
- The first link
- Regarded as the “fixed” reference
- The spatial frame  is attached to it

• End-effector link
- The last link (e.g., gripper)
- A frame  is attached to it

ℱs

ℱe
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Two Common Joint Types
• Revolute/Hinge/Rotational joint

• Prismatic/Translational joint
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• Kinematics: describing the motion of bodies (position 
and velocity) without considering the forces that 
cause them to move

Kinematics: 
The Geometry of Motion
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Kinematic Configuration
• Assuming frames are assigned to each link, we can 

parameterize the pose of each joint 

- Using the relative angle and translation between 
adjacent frames
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Kinematic Configuration

• Two representations of the end-effector pose

- Joint space: The space in which each coordinate 
is a vector of joint poses (angles around joint axis)

- Cartesian space: The space of the rigid 
transformations of the end-effector by , 
where  is the end-effector frame

(Rs→e, ts→e)
ℱe
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Kinematics Equations
• “Define how input movement at one or more joints 

specifies the configuration of the device, in order to 
achieve a task position or end-effector location.”

• Map the joint space coordinate  to a 
transformation matrix :

                                     

• Calculated by composing transformations along the 
kinematic chain

θ ∈ ℝn

T
Ts→e = f(θ)

10https://en.wikipedia.org/wiki/Kinematics_equations 

https://en.wikipedia.org/wiki/Kinematics_equations
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0 0 0 1



Inverse Kinematics

• Given the forward kinematics  and the target 
pose , find solutions  that satisfy 

Ts→e(θ)
Ttarget = 𝕊𝔼(3) θ

Ts→e(θ) = Ttarget
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Inverse Kinematics

13https://product-help.schneider-electric.com/Machine%20Expert/V1.2/en/
codesys_softmotion/topics/_sm_configure_kinematics.htm 

Solutions may not be unique

https://product-help.schneider-electric.com/Machine%20Expert/V1.2/en/codesys_softmotion/topics/_sm_configure_kinematics.htm
https://product-help.schneider-electric.com/Machine%20Expert/V1.2/en/codesys_softmotion/topics/_sm_configure_kinematics.htm


How to Relate the Motion in Joint 
Space and Cartesian Space?

• Q1 (Forward Kinematics): If the robot moves by  in 
the joint space, how much will the end-effector move 
in the Cartesian space?

• Q2 (Inverse Kinematics): If the robot would move the 
end-effector by  in the Cartesian space, how shall 
it change its joint poses? 

Δθ

Δx
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Differentiability of Transformation

•

- , 

-

• We will study the differentiability of rigid 
transformations, starting from rotations

Ts→e = f(θ)
Ts→e(t) = f(θ) Ts→e(t+Δt) = f(θ + Δθ)

Ts→e(t+Δt) − Ts→e(t) = f(θ + Δθ) − f(θ)
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 and 𝕊𝕆(3) 𝕊𝔼(3)



Rotation in ℝ3
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3 Degree of Freedoms



: The Space of Rotations𝕊𝕆(3)

•
• : “Special Orthogonal Group”
- “Group”: roughly, closed under matrix multiplication
- “Orthogonal”: 
- “Special”: 

• Examples:
- : 2D rotations, 1 DoF
- : 3D rotations, 3 DoF

𝕊𝕆(n) = {R ∈ ℝn×n : det(R) = 1,RRT = I}
𝕊𝕆(n)

RRT = I
det(R) = 1

𝕊𝕆(2)
𝕊𝕆(3)
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: The Space of Rigid Transformations𝕊𝔼(3)

•

• : “Special Euclidean Group”
- “Group”: roughly, closed under matrix multiplication
- “Euclidean”:  and 
- “Special”: 

•  has 6 DoF

𝕊𝔼(3) := {T = [R t
0 1], R ∈ 𝕊𝕆(3), t ∈ ℝ3}

𝕊𝔼(3)

R t
det(R) = 1

𝕊𝔼(3)
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• We need some theoretical understanding of  
and 

- Parameterization

- Topological structure

𝕊𝕆(3)
𝕊𝔼(3)
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Axis-Angle Representation



Euler’s Rotation Theorem

• Any composition of rotations (in 3D space) is 
equivalent to a single rotation about a fixed axis 

 ( ) through a positive angle 

• : unit vector of rotation axis

• : angle of rotation

• It indicates that the set of rotations has a group 
structure

•

ω̂ ∈ ℝ3 ∥ω̂∥ = 1 𝜃

ω̂

𝜃

R ∈ 𝕊𝕆(3) := Rot(ω̂, θ)

22https://en.wikipedia.org/wiki/Euler%27s_rotation_theorem 

https://en.wikipedia.org/wiki/Euler%27s_rotation_theorem


Given  and , what is ?ω̂ θ R ∈ 𝕊𝕆(3)



Skew-Symmetric Matrix

•  is skew-symmetric 

• Skew-symmetric matrix operator: 

                 , 

• Cross product can be a linear transformation

-

𝐴 A = − AT

a =
a1
a2
a3

[a] :=
0 −a3 a2

a3 0 −a1

−a2 a1 0

a × b = [a]b
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Given  and , what is ?ω̂ θ R ∈ 𝕊𝕆(3)
• We can show that, for any 

   

• By Taylor’s expansion of sin, cos, , and 
above

• Recall Taylor’s expansion of exponential, 

                  

• We formally have: 
                 

x ∈ ℝ3

Rot(ω̂, θ)x = x + (sin θ)ω̂ × x + (1 − cos θ)ω̂ × (ω̂ × x)
= {I + [ω̂]sin θ + [ω̂]2(1 − cos θ)}x (1)

[ω̂]3 = − [ω̂]

Rot(ω̂, θ)x = (I + θ[ω̂] +
θ2

2!
[ω̂]2 +

θ3

3!
[ω̂]3 + ⋯)x (2)

ex = 1 + x +
1
2!

x2 +
1
3!

x3 + ⋯

Rot(ω̂, θ)x = eθ[ω̂]x, ∀x ∈ ℝ3 (3)
25Derivation: https://en.wikipedia.org/wiki/Rotation_matrix

https://en.wikipedia.org/wiki/Rotation_matrix


Illustration

26https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula 

 is the rotation axis
 is the vector to rotate

 is the vector rotated 

k ∈ ℝ3

v ∈ ℝ3

vrot ∈ ℝ3

https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
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Given  and , what is ?ω̂ θ R ∈ 𝕊𝕆(3)

• By ,

                                  

• This is under such a Definition of Matrix 
Exponential:

      

Rot(ω̂, θ)x = e[ω̂]θx, ∀x ∈ ℝ3

Rot(ω̂, θ) ≡ e[ω̂]θ

e[ω̂]θ = I + θ[ω̂] +
θ2

2!
[ω̂]2 +

θ3

3!
[ω̂]3 + ⋯
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Given  and , what is ?ω̂ θ R ∈ 𝕊𝕆(3)

• In the angle-axis representation, 

•  is also called the rotation vector, or 
exponential coordinate

Rot(ω̂, θ) = e[ω̂]θ

⃗θ = ω̂θ

31



Rodrigues Formula

• Definition of Matrix Exponential:

• Sum of infinite series? Rodrigues Formula

- Can prove that 

- Then, use Taylor expansion of sin and cos

-

[ω̂]3 = − [ω̂]

e[ω̂]θ = I + [ω̂]sin θ + [ω̂]2(1 − cos θ)

32

e[ω̂]θ = I + θ[ω̂] +
θ2

2!
[ω̂]2 +

θ3

3!
[ω̂]3 + ⋯



Given , what is  and ?R ∈ 𝕊𝕆(3) ω̂ θ

• Is there a unique parametrization?

33



Given , what is  and ?R ∈ 𝕊𝕆(3) ω̂ θ

• Is there a unique parametrization? No!

1.  and  give the same rotation

2. when ,  and  can be arbitrary

3.  and  give the same rotation 
( )

(ω̂, θ) (−ω̂, − θ)
R = I θ = 0 ω̂

(ω̂, π) (−ω̂, π)
tr(R) = − 1
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Given , what is  and ?R ∈ 𝕊𝕆(3) ω̂ θ

• If we restrict , a unique parameterization 
exists:

,   

θ ∈ (0,π)

θ = arccos
1
2

[tr(R) − 1] [ω̂] =
1

2 sin θ
(R − RT)
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Distance between Rotations
• How to measure the distance between rotations 

?

• A natural view is to measure the (minimal) effort to 
rotate the body at  pose to  pose:

(R1, R2)

R1 R2

36

∵ (R2RT
1 )R1 = R2

X

Z Y

X

Z

Y

R1

R2

XZ

Y

∴ dist(R1, R2) = θ(R2RT
1 )

= arccos
1
2

[tr(R2RT
1 ) − 1]



Quaternion
Note: In this section,  and ⃗x ∈ ℝ3 q ∈ ℝ4



Complex Number

• Recall the complex number 

-  is the real part and  is the imaginary part

- Imaginary: 

- Conjugate: 

- Absolute value: 

a + bi
a i

i2 = − 1
a − bi

a2 + b2

38https://en.wikipedia.org/wiki/Complex_number 

https://en.wikipedia.org/wiki/Complex_number


Quaternion is a “Number”

• Recall the complex number 

• Quaternion is a more generalized complex number:

 

-  is the real part and  is the imaginary 
part

- Imaginary: 

- anti-commutative : 

a + bi

q = w + xi + yj + zk
w ⃗v = (x, y, z)

i2 = j2 = k2 = ijk = − 1

ij = k = − ji, jk = i = − kj, ki = j = − ik

39



Properties of General Quaternions 

• Vector form:  
• Product: 

- For  and , 

- Not commutable (note that )

• Conjugate: 

• Norm: 

• Inverse: 

q = (w, ⃗v)

q1 = (w1, ⃗v1) q2 = (w2, ⃗v2)
q1q2 = (w1w2 − ⃗vT

1 ⃗v2, w1 ⃗v2 + w2 ⃗v1 + ⃗v1 × ⃗v2)
⃗v1 × ⃗v2 ≠ ⃗v2 × ⃗v1

q* = (w, − ⃗v)
∥q∥2 = w2 + ⃗vT ⃗v = qq* = q*q

q−1 :=
q*

∥q∥2

40



Unit Quaternion as Rotation

• A unit quaternion 1 can represent a rotation
- Four numbers plus one constraint  3 DoF

• Geometrically, the shell of a 4D sphere

𝒒 =
→
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Build Rotation Quaternion

• Exponential coordinate  Quaternion:
                    

• Quaternion is very close to angle-axis representation!

• Exponential coordinate  Quaternion: 

,        

→
q = [cos(θ/2), sin(θ/2)ω̂]

←

θ = 2 arccos(w) ω̂ =
1

sin(θ/2)
⃗v θ ≠ 0

0 θ = 0

42



Unit Quaternion as Rotation

• Rotate a vector  by a quaternion :

1. Augment  to 

2. 

• Compose rotations by quaternion: 

- : first rotate by  and then by 

- Since ,  
composing rotations is as simple as multiplying 
quaternions!

⃗x q
⃗x x = (0, ⃗x)

x′ = qxq−1

(q2(q1xq*1 )q*2 ) q1 q2

(q2(q1xq*1 )q*2 ) = (q2q1)x(q*1 q*2 )

43



Conversation between 
Quaternion and Rotation Matrix

• Rotation  Quaternion 
                             
                  where  and     
                            

• Rotation  Quaternion
- Rotation  Angle-Axis  Quaternion

←
R(q) = E(q)G(q)T

E(q) = [wI + [ ⃗v], − ⃗v]
G(q) = [wI − [ ⃗v], − ⃗v]

→
→ →

44



Double Covering

• Each rotation corresponds to two quaternions 
(“double-covering”):  and q −q
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More about Quaternion

• Quaternion is computationally cheap:

- Internal representation of Physical Engine and 
Robot

• Pay attention to convention (w, x, y, z) or (x, y, z, w)

- (w, x, y, z): SAPIEN, transforms3d, Eigen, blender, 
MuJoCo, V-Rep

- (x, y, z, w): ROS, PhysX, PyBullet
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Summary of Quaternion

• Very useful and popular in practice

• 4D parameterization, compact and efficient to 
compute
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Euler Angles



Euler Angles are Intuitive

49https://www.programmersought.com/article/8900590257/



Euler Angle to Rotation Matrix

• Rotation about principal axis is represented as:

•  for arbitrary rotation

Rx(α) :=
1 0 0
0 cos α −sin α
0 sin α cos α

Ry(β) :=
cos β 0 sin β

0 1 0
−sin β 0 cos β

Rz(γ) :=
cos γ −sin γ 0
sin γ cos γ 0

0 0 1
R = Rz(α)Ry(β)Rx(γ)

50



Euler Angles are not Unique

• Euler angles are not unique for some rotations. 

• For example,  

     

Rz(45∘)Ry(90∘)Rx(45∘) = Rz(90∘)Ry(90∘)Rx(90∘)

= [
0 0 1
0 1 0

−1 0 0]
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Read by Yourself

Gimbal Lock
• “Gimbal lock is the loss of one degree of freedom in a 

multi-dimensional mechanism at certain alignments of 
the axes.” 

52https://en.wikipedia.org/wiki/Gimbal_lock 
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Read by Yourself

Gimbal Lock

• For example: When ,

since changing  and  has the same effects, a 
degree of freedom disappears!

β = π/2

α γ

53https://www.mecademic.com/resources/Euler-angles/Euler-
angles

R = Rz(α)Ry(π/2)Rx(γ)

=
0 0 1

sin(α + γ) cos(α + γ) 0
−cos(α + γ) sin(α + γ) 0



Summary of Euler Angles

• Euler angles can parameterize every rotation and has 
good interpretability

• It is not a unique representation at some points

• There are some points where not every change in the 
target space (rotations) can be realized by a change in 
the source space (Euler angles)
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Summary of 
Rotation Representations

55

Inverse? Composing?

Rotation Matrix ✔ ✔

Euler Angle Complicated Complicated

Angle-axis ✔ Complicated

Quaternion ✔ ✔



Libraries

• Python
- spicy.spatial.transform.Rotation

- transforms3d

- pytransform3d

• Machine learning (PyTorch): kornia, pypose

• C/C++: Eigen, ceres
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Challenges in Parameterizing 
𝕊𝕆(3)



Read by Yourself

Parameterization

•  is recorded by real numbers

• Parameterization is the mapping between  and 
:

                                      

R ∈ 𝕊𝕆(3)
ℝd

𝕊𝕆(3)
f(θ) = Rθ
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Read by Yourself

Prerequisite: Topology
• Topology: Structural Properties of a Manifold

• Two surfaces  and  are topologically equivalent if 
there is a differentiable bijection between  and 

M N
M N
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Read by Yourself

Prerequisite: Topology
• More examples:
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Read by Yourself

Topology of 𝕊𝕆(n)
• The topology of  is the same as a circle𝕊𝕆(2)
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Read by Yourself

Topology of 𝕊𝕆(n)

• Circles do not have the same topology as 
 No differentiable bijections between  and

• The topology of  is also different from 

(−1,1)n

⟹ 𝕊𝕆(2)
(−1,1)n

𝕊𝕆(3) (−1,1)n

62
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Read by Yourself

Parameterizing Rotations is Tricky

• Although  only has 3 DoF, you cannot build a 
differentiable bijection between  and any 
subset of 

• Even parameterizing  by  with , 
• we cannot build differentiable bijections with 

 
• we have to either introduce constraints, or bear with 

singularities and the “multi-cover” issue

• The challenge brings a lot of trouble to optimization 
and learning

𝕊𝕆(3)
𝕊𝕆(3)

ℝ3

𝕊𝕆(3) ℝd d > 3

(−1,1)d
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Read by Yourself

Rotation Parameterization for 
Neural Networks

• Zhou, Yi, et al. "On the continuity of rotation 
representations in neural networks." Proceedings of 
the IEEE/CVF conference on computer vision and 
pattern recognition. 2019.

• Xiang, Sitao, and Hao Li. "Revisiting the continuity of 
rotation representations in neural networks." arXiv 
preprint arXiv:2006.06234 (2020).
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Local Structure of 𝕊𝕆(3)



Read by Yourself

Local Structure of 𝕊𝕆(3)

• Definition of Matrix Exponential:

        

• Note: 

-  only when 

• When , 

e[ω̂]θ = I + θ[ω̂] +
θ2

2!
[ω̂]2 +

θ3

3!
[ω̂]3 + ⋯

eA+B = eAeB AB − BA = 0
θ ≈ 0 e[ω̂]θ = I + θ[ω̂] + o(θ[ω̂])
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Read by Yourself

Local Structure of 𝕊𝕆(3)
• By  when ,

          

• Interpretation:

-  forms linear subspace of 

-

- Any local movement in  around , which is 
, can be approximated by 

• The set of  forms the tangent space of  at 

e[ω̂]θ = I + θ[ω̂] + o(θ[ω̂]) θ ≈ 0

e[ ⃗θ] − I = [ ⃗θ] + o([ ⃗θ])

[ ⃗θ] ℝ3×3

e[ ⃗θ] → I as [ ⃗θ] → 0
𝕊𝕆(3) I

≈ e[ ⃗θ] − I [ ⃗θ]

[ ⃗θ] 𝕊𝕆(3) I

p
Tp
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Read by Yourself

Lie algebra  of 𝔰𝔬(3) 𝕊𝕆(3)

• The set of  is the tangent space of  at 
- Ex: What is the tangent space at any ?

‣ , 

‣ i.e.,  near ,  such that 

‣ So the tangent space at  is 

• We give this set a name, the “Lie algebra of ”

-

[ ⃗θ] 𝕊𝕆(3) R = I
R ∈ 𝕊𝕆(3)

∵ e[ ⃗θ] − I = [ ⃗θ] + o([ ⃗θ]) ∴ e[ ⃗θ]R − R = [ ⃗θ]R + o([ ⃗θ])

∀R′ ∈ 𝕊𝕆(3) R ∃ ⃗θ ∈ ℝ3 R′ ≈ R + [ ⃗θ]R

R {SR : S ∈ ℝ3×3, ST = − S}

𝕊𝕆(3)
𝔰𝔬(3) := {S ∈ ℝ3×3 : ST = − S}
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Read by Yourself

Why called “algebra”?

• Introducing Lie bracket , and the 
set of skew-symmetric matrices are closed under this 
binary operator

• Then, the set of skew-symmetric matrices form an 
“algebra”, because

- The set is closed under Lie bracket

- Left and right distributive law are satisfied under Lie 
bracket

[A, B] = AB − BA
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Read by Yourself

Tutorial for Lie Algebra

• Sola, Joan, Jeremie Deray, and Dinesh Atchuthan. "A 
micro Lie theory for state estimation in robotics." arXiv 
preprint arXiv:1812.01537 (2018).
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