

Machine Learning for Robotics

Rotation

Jiayuan Gu

Slides prepared by Prof. Hao Su with the help of Yuzhe Qin, Minghua Liu, Fanbo Xiang, Jiayuan Gu

Agenda

- Robot: Multi-Body System
- Math about Rotation: $\mathbb{SO}(3)$ and $\mathbb{SE}(3)$
- Representations of Rotation
 - Axis-Angle
 - Quaternions
 - Euler Angles
- Local Structure of $\mathbb{SO}(3)$

Robot: Multi-Body System

Link and Joint

Link:

- Links are interconnected rigid bodies
- Usually a chain (one parent)

Joint:

- Joints are the connectors between links. They determine the DoF of motion between adjacent links

Base Link and End-Effector Link

- Base (Root) link:
 - The first link
 - Regarded as the "fixed" reference
 - The spatial frame \mathcal{F}_s is attached to it
- End-effector link
 - The last link (e.g., gripper)
 - A frame \mathcal{F}_e is attached to it

Two Common Joint Types

Revolute/Hinge/Rotational joint

• Prismatic/Translational joint

Kinematics: The Geometry of Motion

 Kinematics: describing the motion of bodies (position and velocity) without considering the forces that cause them to move

Kinematic Configuration

- Assuming frames are assigned to each link, we can parameterize the pose of each joint
 - Using the relative **angle** and **translation** between adjacent frames

Kinematic Configuration

- Two representations of the end-effector pose
 - Joint space: The space in which each coordinate is a vector of joint poses (angles around joint axis)
 - **Cartesian space:** The space of the rigid transformations of the end-effector by $(R_{s \rightarrow e}, \mathbf{t}_{s \rightarrow e})$, where \mathcal{F}_e is the end-effector frame

Kinematics Equations

• "Define how **input movement** at one or more joints specifies the configuration of the device, in order to **achieve a task position** or end-effector location."

• Map the joint space coordinate $\theta \in \mathbb{R}^n$ to a transformation matrix *T*:

$$T_{s \to e} = f(\theta)$$

 Calculated by composing transformations along the kinematic chain

base

end_effector

$$T_{0\to3}^{0} = T_{0\to1}^{0} T_{1\to2}^{1} T_{2\to3}^{2} = \begin{bmatrix} \cos\theta_{1} & -\sin\theta_{1} & 0 & -\sin\theta_{1}(l_{2}+l_{3}) \\ \sin\theta_{1} & \cos\theta_{1} & 0 & \cos\theta_{1}(l_{2}+l_{3}) \\ 0 & 0 & 1 & l_{1}-l_{4}+\theta_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Inverse Kinematics

• Given the forward kinematics $T_{s \to e}(\theta)$ and the target pose $T_{target} = \mathbb{SE}(3)$, find solutions θ that satisfy $T_{s \to e}(\theta) = T_{target}$

Inverse Kinematics

Solutions may not be unique

How to Relate the Motion in Joint Space and Cartesian Space?

• Q1 (Forward Kinematics): If the robot moves by $\Delta \theta$ in the joint space, how much will the end-effector move in the Cartesian space?

• Q2 (Inverse Kinematics): If the robot would move the end-effector by Δx in the Cartesian space, how shall it change its joint poses?

Differentiability of Transformation

• $T_{s \to e} = f(\theta)$

-
$$T_{s \to e(t)} = f(\theta), T_{s \to e(t + \Delta t)} = f(\theta + \Delta \theta)$$

-
$$T_{s \to e(t + \Delta t)} - T_{s \to e(t)} = f(\theta + \Delta \theta) - f(\theta)$$

• We will study the differentiability of rigid transformations, starting from rotations

SO(3) and SE(3)

Rotation in \mathbb{R}^3

3 Degree of Freedoms

SO(3): The Space of Rotations

- $\mathbb{SO}(n) = \{R \in \mathbb{R}^{n \times n} : \det(R) = 1, RR^T = I\}$
- SO(n): "Special Orthogonal Group"
 - "Group": roughly, closed under matrix multiplication
 - "Orthogonal": $RR^T = I$
 - "Special": det(R) = 1
- Examples:
 - SO(2): 2D rotations, 1 DoF
 - SO(3): 3D rotations, 3 DoF

$\mathbb{SE}(3)$: The Space of Rigid Transformations

•
$$\mathbb{SE}(3) := \left\{ T = \begin{bmatrix} R & \mathbf{t} \\ 0 & 1 \end{bmatrix}, R \in \mathbb{SO}(3), \mathbf{t} \in \mathbb{R}^3 \right\}$$

- SE(3): "Special Euclidean Group"
 - "Group": roughly, closed under matrix multiplication
 - "Euclidean": R and t
 - "Special": det(R) = 1
- SE(3) has 6 DoF

- We need some theoretical understanding of $\mathbb{SO}(3)$ and $\mathbb{SE}(3)$
 - Parameterization
 - Topological structure

Axis-Angle Representation

Euler's Rotation Theorem

- Any composition of rotations (in 3D space) is equivalent to a single rotation about a fixed axis $\hat{\omega} \in \mathbb{R}^3$ ($\|\hat{\omega}\| = 1$) through a positive angle θ
 - $\hat{\omega}$: unit vector of rotation axis
 - θ : angle of rotation

It indicates that the set of rotations has a group structure

•
$$R \in \mathbb{SO}(3) := \operatorname{Rot}(\hat{\omega}, \theta)$$

Given $\hat{\omega}$ and θ , what is $R \in SO(3)$?

Skew-Symmetric Matrix

- *A* is skew-symmetric $A = -A^T$
- Skew-symmetric matrix operator:

$$a = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}, [a] := \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}$$

Cross product can be a linear transformation

$$a \times b = [a]b$$

Given $\hat{\omega}$ and θ , what is $R \in SO(3)$?

• We can show that, for any $x \in \mathbb{R}^3$ $\operatorname{Rot}(\hat{\omega}, \theta)x = x + (\sin \theta)\hat{\omega} \times x + (1 - \cos \theta)\hat{\omega} \times (\hat{\omega} \times x)$

 $= \{I + [\hat{\omega}]\sin\theta + [\hat{\omega}]^2(1 - \cos\theta)\}x \qquad (1)$

Illustration

 $k \in \mathbb{R}^3$ is the rotation axis $v \in \mathbb{R}^3$ is the vector to rotate $v_{rot} \in \mathbb{R}^3$ is the vector rotated

Given $\hat{\omega}$ and θ , what is $R \in SO(3)$?

• We can show that, for any $x \in \mathbb{R}^3$ $\operatorname{Rot}(\hat{\omega}, \theta)x = x + (\sin \theta)\hat{\omega} \times x + (1 - \cos \theta)\hat{\omega} \times (\hat{\omega} \times x)$

 $= \{I + [\hat{\omega}]\sin\theta + [\hat{\omega}]^2(1 - \cos\theta)\}x \qquad (1)$

• By Taylor's expansion of **sin**, **cos**, $[\hat{\omega}]^3 = -[\hat{\omega}]$, and above

Rot
$$(\hat{\omega}, \theta)x = (I + \theta[\hat{\omega}] + \frac{\theta^2}{2!}[\hat{\omega}]^2 + \frac{\theta^3}{3!}[\hat{\omega}]^3 + \cdots)x$$

Given $\hat{\omega}$ and θ , what is $R \in SO(3)$?

• We can show that, for any $x \in \mathbb{R}^3$ $\operatorname{Rot}(\hat{\omega}, \theta)x = x + (\sin \theta)\hat{\omega} \times x + (1 - \cos \theta)\hat{\omega} \times (\hat{\omega} \times x)$

 $= \{I + [\hat{\omega}]\sin\theta + [\hat{\omega}]^2(1 - \cos\theta)\}x \qquad (1)$

• By Taylor's expansion of **sin**, **cos**, $[\hat{\omega}]^3 = -[\hat{\omega}]$, and above

Rot
$$(\hat{\omega}, \theta)x = (I + \theta[\hat{\omega}] + \frac{\theta^2}{2!} [\hat{\omega}]^2 + \frac{\theta^3}{3!} [\hat{\omega}]^3 + \cdots)x$$

• Recall Taylor's expansion of exponential,

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \cdots$$

Given $\hat{\omega}$ and θ , what is $R \in \mathbb{SO}(3)$?

• We can show that, for any $x \in \mathbb{R}^3$ $\operatorname{Rot}(\hat{\omega}, \theta)x = x + (\sin \theta)\hat{\omega} \times x + (1 - \cos \theta)\hat{\omega} \times (\hat{\omega} \times x)$

 $= \{I + [\hat{\omega}]\sin\theta + [\hat{\omega}]^2(1 - \cos\theta)\}x \qquad (1)$

• By Taylor's expansion of **sin**, **cos**, $[\hat{\omega}]^3 = -[\hat{\omega}]$, and above

$$\operatorname{Rot}(\hat{\omega},\theta)x = (I+\theta[\hat{\omega}] + \frac{\theta^2}{2!}[\hat{\omega}]^2 + \frac{\theta^3}{3!}[\hat{\omega}]^3 + \cdots)x$$

• Recall Taylor's expansion of exponential,

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \cdots$$

• Formally, we have:

$$\operatorname{Rot}(\hat{\omega},\theta)x = e^{[\hat{\omega}]\theta}x, \forall x \in \mathbb{R}^3$$

Given $\hat{\omega}$ and θ , what is $R \in \mathbb{SO}(3)$?

• By Rot $(\hat{\omega}, \theta) x = e^{[\hat{\omega}]\theta} x, \forall x \in \mathbb{R}^3$,

 $\operatorname{Rot}(\hat{\omega}, \theta) \equiv e^{[\hat{\omega}]\theta}$

This is under such a **Definition of Matrix Exponential**:

$$e^{[\hat{\omega}]\theta} = I + \theta[\hat{\omega}] + \frac{\theta^2}{2!} [\hat{\omega}]^2 + \frac{\theta^3}{3!} [\hat{\omega}]^3 + \cdots$$

Given $\hat{\omega}$ and θ , what is $R \in SO(3)$?

- In the angle-axis representation, $Rot(\hat{\omega}, \theta) = e^{[\hat{\omega}]\theta}$
- $\vec{\theta} = \hat{\omega}\theta$ is also called the **rotation vector**, or **exponential coordinate**

Rodrigues Formula

- Definition of Matrix Exponential: $e^{[\hat{\omega}]\theta} = I + \theta[\hat{\omega}] + \frac{\theta^2}{2!} [\hat{\omega}]^2 + \frac{\theta^3}{3!} [\hat{\omega}]^3 + \cdots$
- Sum of infinite series? Rodrigues Formula
 - Can prove that $[\hat{\omega}]^3 = [\hat{\omega}]$
 - Then, use Taylor expansion of sin and cos
 - $e^{[\hat{\omega}]\theta} = I + [\hat{\omega}]\sin\theta + [\hat{\omega}]^2(1 \cos\theta)$

Given $R \in SO(3)$, what is $\hat{\omega}$ and θ ?

• Is there a **unique** parametrization?

Given $R \in SO(3)$, what is $\hat{\omega}$ and θ ?

- Is there a **unique** parametrization? No!
 - 1. $(\hat{\omega}, \theta)$ and $(-\hat{\omega}, -\theta)$ give the same rotation
 - 2. when R = I, $\theta = 0$ and $\hat{\omega}$ can be arbitrary
 - 3. $(\hat{\omega}, \pi)$ and $(-\hat{\omega}, \pi)$ give the same rotation $(\operatorname{tr}(R) = -1)$

Given $R \in SO(3)$, what is $\hat{\omega}$ and θ ?

• If we restrict $\theta \in (0,\pi)$, a unique parameterization exists:

$$\theta = \arccos \frac{1}{2} [\operatorname{tr}(R) - 1], \quad [\hat{\omega}] = \frac{1}{2\sin\theta} (R - R^T)$$

Distance between Rotations

- How to measure the distance between rotations (R_1, R_2) ?
- A natural view is to measure the (minimal) effort to rotate the body at R_1 pose to R_2 pose:

$$\therefore (R_2 R_1^T) R_1 = R_2$$

$$\therefore \operatorname{dist}(R_1, R_2) = \theta(R_2 R_1^T)$$
$$= \operatorname{arccos} \frac{1}{2} [\operatorname{tr}(R_2 R_1^T) - 1]$$

Quaternion

Note: In this section, $\vec{x} \in \mathbb{R}^3$ and $q \in \mathbb{R}^4$

Complex Number

- Recall the complex number $a + b\mathbf{i}$
 - *a* is the real part and **i** is the imaginary part
 - Imaginary: $\mathbf{i}^2 = -1$
 - Conjugate: $a b\mathbf{i}$
 - Absolute value: $\sqrt{a^2 + b^2}$

Quaternion is a "Number"

- Recall the complex number $a + b\mathbf{i}$
- Quaternion is a more generalized complex number:

 $q = w + x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$

- w is the real part and $\vec{v} = (x, y, z)$ is the imaginary part

- Imaginary:
$$i^2 = j^2 = k^2 = ijk = -1$$

- anti-commutative :

$$ij = k = -ji$$
, $jk = i = -kj$, $ki = j = -ik$

Properties of General Quaternions

- Vector form: $q = (w, \vec{v})$
- Product:

- For
$$q_1 = (w_1, \vec{v}_1)$$
 and $q_2 = (w_2, \vec{v}_2)$,
 $q_1q_2 = (w_1w_2 - \vec{v}_1^T\vec{v}_2, w_1\vec{v}_2 + w_2\vec{v}_1 + \vec{v}_1 \times \vec{v}_2)$

- Not commutable (note that $\vec{v}_1 \times \vec{v}_2 \neq \vec{v}_2 \times \vec{v}_1$)
- Conjugate: $q^* = (w, -\vec{v})$
- Norm: $||q||^2 = w^2 + \vec{v}^T \vec{v} = qq^* = q^*q$

• Inverse:
$$q^{-1} := \frac{q^*}{\|q\|^2}$$

Unit Quaternion as Rotation

- A unit quaternion $\|q\| = 1$ can represent a rotation
 - Four numbers plus one constraint \rightarrow 3 DoF
- Geometrically, the shell of a 4D sphere

Build Rotation Quaternion

• Exponential coordinate \rightarrow Quaternion: $q = [\cos(\theta/2), \sin(\theta/2)\hat{\omega}]$

- Quaternion is very close to angle-axis representation!
- Exponential coordinate ← Quaternion:

$$\theta = 2 \arccos(w), \qquad \hat{\omega} = \begin{cases} \frac{1}{\sin(\theta/2)} \vec{v} & \theta \neq 0\\ 0 & \theta = 0 \end{cases}$$

Unit Quaternion as Rotation

• Rotate a vector \vec{x} by a quaternion q:

1. Augment
$$\vec{x}$$
 to $x = (0, \vec{x})$
2. $x' = qxq^{-1}$

- Compose rotations by quaternion:
 - $(q_2(q_1xq_1^*)q_2^*)$: first rotate by q_1 and then by q_2
 - Since $(q_2(q_1xq_1^*)q_2^*) = (q_2q_1)x(q_1^*q_2^*)$, composing rotations is as simple as multiplying quaternions!

Conversation between Quaternion and Rotation Matrix

• Rotation \leftarrow Quaternion

$$R(q) = E(q)G(q)^{T}$$

where $E(q) = [wI + [\vec{v}], -\vec{v}]$ and
 $G(q) = [wI - [\vec{v}], -\vec{v}]$

- Rotation \rightarrow Quaternion
 - Rotation \rightarrow Angle-Axis \rightarrow Quaternion

Double Covering

• Each rotation corresponds to two quaternions ("double-covering"): q and -q

More about Quaternion

- Quaternion is computationally cheap:
 - Internal representation of Physical Engine and Robot
- Pay attention to convention (w, x, y, z) or (x, y, z, w)
 - (w, x, y, z): SAPIEN, transforms3d, Eigen, blender, MuJoCo, V-Rep
 - (x, y, z, w): ROS, PhysX, PyBullet

Summary of Quaternion

• Very useful and popular in practice

 4D parameterization, compact and efficient to compute

Euler Angles

Euler Angles are Intuitive

Euler Angle to Rotation Matrix

• Rotation about principal axis is represented as:

$$R_{x}(\alpha) := \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$
$$R_{y}(\beta) := \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$
$$R_{z}(\gamma) := \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\cdot R = R_{z}(\alpha)R_{y}(\beta)R_{x}(\gamma) \text{ for arbitrary rotation}$$

Euler Angles are not Unique

- Euler angles are not unique for some rotations.
- For example,

 $R_{z}(45^{\circ})R_{y}(90^{\circ})R_{x}(45^{\circ}) = R_{z}(90^{\circ})R_{y}(90^{\circ})R_{x}(90^{\circ})$ $= \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

Gimbal Lock

 "Gimbal lock is the loss of one degree of freedom in a multi-dimensional mechanism at certain alignments of the axes."

Gimbal Lock

• For example: When $\beta = \pi/2$, $R = R_z(\alpha)R_y(\pi/2)R_x(\gamma)$ $= \begin{bmatrix} 0 & 0 & 1\\ \sin(\alpha + \gamma) & \cos(\alpha + \gamma) & 0\\ -\cos(\alpha + \gamma) & \sin(\alpha + \gamma) & 0 \end{bmatrix}$

since changing α and γ has the same effects, a degree of freedom disappears!

https://www.mecademic.com/resources/Euler-angles/Euler-angles

Summary of Euler Angles

- Euler angles can parameterize every rotation and has good interpretability
- It is not a unique representation at some points
- There are some points where not every change in the target space (rotations) can be realized by a change in the source space (Euler angles)

Summary of Rotation Representations

	Inverse?	Composing?
Rotation Matrix	~	~
Euler Angle	Complicated	Complicated
Angle-axis	✓	Complicated
Quaternion	✓	 ✓

Libraries

• Python

- spicy.spatial.transform.Rotation
- transforms3d
- pytransform3d
- Machine learning (PyTorch): kornia, pypose
- C/C++: Eigen, ceres

Challenges in Parameterizing SO(3)

Parameterization

- $R \in SO(3)$ is recorded by real numbers
- Parameterization is the mapping between \mathbb{R}^d and $\mathbb{SO}(3)$:

$$f(\theta) = R_{\theta}$$

Prerequisite: Topology

• Topology: Structural Properties of a Manifold

• Two surfaces M and N are *topologically equivalent* if there is a **differentiable bijection** between M and N

Prerequisite: Topology

• More examples:

Topology of SO(n)

- The topology of $\mathbb{SO}(2)$ is the same as a circle

Topology of SO(n)

- Circles do not have the same topology as $(-1,1)^n$ \implies No differentiable bijections between SO(2) and $(-1,1)^n$ $(-1,1)^n$ (-1
- The topology of SO(3) is also different from $(-1,1)^n$

Parameterizing Rotations is Tricky

- Although $\mathbb{SO}(3)$ only has 3 DoF, you cannot build a differentiable bijection between $\mathbb{SO}(3)$ and any subset of \mathbb{R}^3
- Even parameterizing $\mathbb{SO}(3)$ by \mathbb{R}^d with d > 3,
 - we cannot build differentiable bijections with $(-1,1)^d$
 - we have to either introduce constraints, or bear with singularities and the "multi-cover" issue
- The challenge brings a lot of trouble to optimization
 and learning

Rotation Parameterization for Neural Networks

- Zhou, Yi, et al. "On the continuity of rotation representations in neural networks." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.
- Xiang, Sitao, and Hao Li. "Revisiting the continuity of rotation representations in neural networks." arXiv preprint arXiv:2006.06234 (2020).

Local Structure of $\mathbb{SO}(3)$

Local Structure of SO(3)

• Definition of Matrix Exponential:

$$e^{[\hat{\omega}]\theta} = I + \theta[\hat{\omega}] + \frac{\theta^2}{2!} [\hat{\omega}]^2 + \frac{\theta^3}{3!} [\hat{\omega}]^3 + \cdots$$

• Note:

- $e^{A+B} = e^A e^B$ only when AB - BA = 0

• When $\theta \approx 0$, $e^{[\hat{\omega}]\theta} = I + \theta[\hat{\omega}] + o(\theta[\hat{\omega}])$

Local Structure of SO(3)

• By $e^{[\hat{\omega}]\theta} = I + \theta[\hat{\omega}] + o(\theta[\hat{\omega}])$ when $\theta \approx 0$,

$$e^{[\vec{\theta}]} - I = [\vec{\theta}] + o([\vec{\theta}])$$

- Interpretation:
 - $[\vec{\theta}]$ forms linear subspace of $\mathbb{R}^{3 \times 3}$

-
$$e^{[\vec{\theta}]} \to I \text{ as } [\vec{\theta}] \to 0$$

- **Any** local movement in $\mathbb{SO}(3)$ around *I*, which is $\approx e^{[\vec{\theta}]} I$, can be approximated by $[\vec{\theta}]$
- The set of $[\vec{\theta}]$ forms the tangent space of $\mathbb{SO}(3)$ at I

p

 \mathbf{T}_p

Lie algebra $\mathfrak{so}(3)$ of $\mathbb{SO}(3)$

- The set of $[\vec{\theta}]$ is the tangent space of $\mathbb{SO}(3)$ at R = I
 - Ex: What is the tangent space at any $R \in SO(3)$?

$$\cdot \quad \because e^{[\vec{\theta}]} - I = [\vec{\theta}] + o([\vec{\theta}]), \ \therefore e^{[\vec{\theta}]}R - R = [\vec{\theta}]R + o([\vec{\theta}])$$

- i.e., $\forall R' \in \mathbb{SO}(3)$ near R, $\exists \vec{\theta} \in \mathbb{R}^3$ such that $R' \approx R + [\vec{\theta}]R$
- So the tangent space at *R* is $\{SR : S \in \mathbb{R}^{3 \times 3}, S^T = -S\}$
- We give this set a name, the "Lie algebra of SO(3)"

-
$$\mathfrak{so}(3) := \{ S \in \mathbb{R}^{3 \times 3} : S^T = -S \}$$

Why called "algebra"?

- Introducing Lie bracket [A, B] = AB BA, and the set of skew-symmetric matrices are closed under this binary operator
- Then, the set of skew-symmetric matrices form an "algebra", because
 - The set is closed under Lie bracket
 - Left and right distributive law are satisfied under Lie bracket

Tutorial for Lie Algebra

• Sola, Joan, Jeremie Deray, and Dinesh Atchuthan. "A micro Lie theory for state estimation in robotics." *arXiv preprint arXiv:1812.01537* (2018).