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Kinematics Equations



Kinematics Equations

* “Define how input movement at one or more joints
specifies the configuration of the device, in order to
achieve a task position or end-effector location.”

. Map the joint space coordinate 8 € R" to a
transformation matrix 7"

I.=f0)

 Calculated by composing transformations along the
Kinematic chain

https://en.wikipedia.org/wiki/Kinematics equations 4
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Kinematics Equations

« The kinematics equations of a serial chain of 7 links,
with joint parameters 0, are given by

. Joint matrices Z;,(0;) characterize the relative
movement at each joint

. Link matrices X/(6;) define the geometry of each link

https://en.wikipedia.org/wiki/Kinematics equations 5
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Forward Kinematic Problem

» “Forward kinematics refers to the use of the kinematic equations
of a robot to compute the position of the end-effector from
specified values for the joint parameters.”

. Given @, whatis T,_,, = f(0)?

https://en.wikipedia.org/wiki/Forward kinematics 6
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Forward Kinematic Problem

« Given 0, whatis T

soe = J(0)7
. Given 6 and A0, whatis T,_, g, pg) = /(0 + AO)?

. Given 0(¢), whatis T —>e(9) = £(6)0?



What is TS_> N (

e SE(3)

. Derivative of T _,,

« Checking the differential:
T° = =177 T° =

s—e(t+Ar) s—e(1) e(t)—e(t+Ar)" s—e(t) s—e(1)

(using composition rule as linear transformation)

TO — Tim SO—>e(t+Al‘)_ SO—>e(t)
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Representation of TS_> o

. Since T'._., € SE(3) can be represented by a 4x4

se
matrix, 1_, , can also be represented by a 4x4 matrix

. Are there any structures of T._,,and T _, ,?
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Screw, Twist

 We will introduce later

- a 6D vector “screw” y to describe the rigid
transformation, so that 7' = e#

- a 6D vector “twist” ¢ to describe the instant
velocity
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I'._,, and Jacobian

* In vector calculus, the Jacobian matrix of a vector-
valued function of several variables is the matrix of all
its first-order partial derivatives.
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. Given Ts_w(@) = f(@)@, f(@) is kind of a Jacobian
matrix

https://en.wikipedia.org/wiki/Jacobian matrix_and_determinant 11
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Inverse Kinematic Problem

* “Inverse kinematics makes use of the kinematics equations to
determine the joint parameters that provide a desired
configuration (position and rotation) for the end-effector.”

- Given T_, ,, whatis O by solving T,_, , = f(0)?

S—e’

https://en.wikipedia.org/wiki/Inverse kinematics 12
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Inverse Kinematic Problem

. Given T’

S—e’

what is 6 by solving T,_,, = f(0)?

. Given 6 and T, _, .9, pg), What is A0 by solving
TS—>€(9+A9) = f(@ T AQ)?

. Given T, p, what is 0(¢) by solving T}_, o, = f(0)6?

https://en.wikipedia.org/wiki/Inverse kinematics 13
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Two Types of Approaches

 Analytical Solution

- Compute the inverse mapping of T,_, , = f(0)

« Numerical Solution

- Solve T,_, , = f(0) by numerical methods using

gradients (Jacobian) f(é’)

14



Jacobian of Kinematic Chain



Geometric Jacobian

. Kinematics Equation: T _)e(t) f(@)@

 There is a “minimal” representatlon of velocity, twist
fe(t) € R6 such that T—>e(t) g(fe(t)) sme(t)? where

g : R® » R¥%is a differentiable mapping

. In this section, we will discuss ¢, = J(6)0
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TSS—>b(z) —

1 0 0 0

0O cos(at) —sm(at) 1+ sin(ar)
O sin(at) cos(at) —cos(ar)
0 0 0 |

Example
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TS

A)

Sbh(t)

o O O O

Example

0 0 0
—sin(at) —cos(ar) cos(at)
cos(at) —sin(at) sin(at)
0 0 0
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Geometric Jacobian

 Recall
(0] A . (0] ()
. —e(f+Af —e(t
T2, := lim e
Ar—() At

« Two commonly used observer frames:

_ Spatial twist &° o)

_ Body twist &2 o) When b = e(t)
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Spatial Geometric Jacobian

* Spatial Geometric Jacobian J°(8):

S =100
where 8 € R” (n joints), J5(0) € R®*"

. The i-th column of J(0) is ’é‘;(t), the twist when the movement is
caused only by the i-th joint while all other joints stay static
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Spatial Geometric Jacobian

* Spatial Geometric Jacobian J°(0):
e(t) = J%(6)0
where 8 € R” (n joints), J5(0) € R®*"

. The i-th column of J(0) is 5 o1 the twist when the movement is
caused only by the i-th joint while all other joints stay static

/\

. For example, e(t) describes the

motion of the green part, which is to
revolute about Joint {2}
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Body Geometric Jacobian

- Body Geometric Jacobian J?(6):
b _ ybion/
o) = J?(60)0
where J2(0) € R®*"

. The i-th column of J(0) is ’é[e’(t), the twist when the movement is
caused only by the i-th joint while all other joints stay static
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Body Geometric Jacobian

- Body Geometric Jacobian J?(0):

f(t) = J2(0)6

where J?(0) € R
. The i-th column of J(0) is iA’e’(t), the twist when the movement is
caused only by the i-th joint while all other joints stay static

. For example, 235(:) describes the

motion of the green part observed by
F ;= F (), Which is to revolute

about Joint {2}
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More about Jacobian

« Several libraries provide the computation of geometric
Jacobian (e.g., pinocchio, pytorch kinematics,

polymetis)

. Geometric Jacobian J(0) € R®" usually refers to the
mapping from joint velocities to twist
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https://stack-of-tasks.github.io/pinocchio/
https://github.com/UM-ARM-Lab/pytorch_kinematics
https://github.com/facebookresearch/fairo/tree/main/polymetis

Inverse Kinematics



Inverse Kinematics

* Position query

- Given the forward kinematics 7, _, ,(¢) and the
target pose 71,

arger = SE(3), find 0 that satisfies
TS—>€(9) — Ttarget
* Velocity query

- Given the end-effector velocity (twist), find the joint
velocity that satisfies ¢, = J(6)0

« May have multiple solutions, a unique solution or no
solution
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Null Space of Jacobian

» Consider the velocity query IK task

. Recall that & = J(0)8 for an n-joint kinematic chain,
where J is a 6 X n matrix

. When n > 6, the joint space is projected to a lower-
dimensional space and J must exist a null space

« As aresult, IK may have infinite solutions (a special
solution + any vector in the null space of J)

* The null space adds flexibility to make motion plans
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Analytical Solution

. Try to solve the equation 7, = 7(f) and get an

analytical solution for 6

arget

—sin0,(1, + I3)

[ cos 0, —sin6, 0O

sind; cos6;, 0 cosO,(l,+1)
1
0

- e.g., solve 6, and 0, for = Lyarget

0 0 1

* For robots with more than 3-DoF, analytical solution
can be very complex

- e.g., for a 6-DoF robot, you will need several pages
to write down the formula

« Some useful libraries: IKFast, IKBT
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Numerical Solution

 Solving a nonlinear optimization problem

« Standard numerical optimization algorithms can be
utilized, e.g. Newton-Raphson and Levenberg-
Marquardt

* Numerical IK leverages the geometric Jacobian

¢ =J(0)o



Levenberg—Marquardt Algorithm

* Error between the desired pose and the current one:
err(e) — T(H) target S S[E(3)

. Differentiate: T, (6) = J,.(0)0

. There is a “minimal” representation, screw y € R®
such that y = G(T(0)), where G : R¥* > R%is a
differentiable mapping
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Levenberg—Marquardt Algorithm

. In LM algorithm, we iteratively update 6
. In each iteration, we try to find a Af that minimizes:
(0, AO) = |1,y + T, (OAO” + 4] AG]*

. A term stabilizes the optimization

» Closed-form solution (/ = —J,.):

JYWT+ADAO =Ty,
. Solve A and then update @ by: 0 < 0 + A0
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Levenberg—Marquardt Algorithm

JT+ DA =J!
. Damping factor A > 0 is adjusted at each iteration:

. If S(0, AO) is decreasing, a smaller 4 (e.g., 4 < 0.14)
can be used.

err

- closer to the Gauss—Newton algorithm
. Otherwise, a larger 4 (e.g., 4 < 104) can be used.

- closer to the gradient-descent algorithm

32 Read by Yourself



Levenberg—Marquardt Algorithm

* LM algorithm may converge to a local minima, initial
0, is very important:

- Sampling multiple 6, may boost the performance
. In most cases, @ comes with limit constraints:

- I[i] < 0[] < rli]

- Ajoint can only translate (or rotate) within the limit

- Invalid state rejection

Clipping during the optimization iterations

33 Read by Yourself



Kinematic Singularity

Question: Is it always possible to move the end-effector to any
direction & for a robot with DoF > 67

- Kinematic singularity:

- Arobot configuration where the robot’s end-effector loses
the ability to move in one direction instantaneously

. If rank(J(@)) < 6 at some 0, by A& = J(0)AO, A& can only be
in a linear space with dimension rank(J(0)) < 6, losing its
ability to move in some directions

 Note: Kinematic singularity does not mean that there exists a
configuration that is not accessible (may get to the pose by
some other motion trajectory)



Kinematic Singularity

Workspace region <
where Jacobian is ill-
conditioned

Exact Loci of
singularity

Singular
direction

Revolute joints of
planar 2DOF manipulator

https://www.sciencedirect.com/science/article/pii/S0736584507001068
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