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Agenda

• Kinematics Equations

• Forward Kinematics

- Jacobian of Kinematic Chain

• Inverse Kinematics

• Screw and Twist

2



Kinematics Equations



Kinematics Equations
• “Define how input movement at one or more joints 

specifies the configuration of the device, in order to 
achieve a task position or end-effector location.”

• Map the joint space coordinate  to a 
transformation matrix :

                                     

• Calculated by composing transformations along the 
kinematic chain

θ ∈ ℝn

T
Ts→e = f(θ)
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Kinematics Equations

• The kinematics equations of a serial chain of   links, 
with joint parameters   are given by

• Joint matrices  characterize the relative 
movement at each joint

• Link matrices  define the geometry of each link

n
θi

T =
n

∏
i=1

ZiXi

Zi(θi)

Xi(θi)
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Forward Kinematic Problem

• “Forward kinematics refers to the use of the kinematic equations 
of a robot to compute the position of the end-effector from 
specified values for the joint parameters.”

• Given ,  what is ?θ Ts→e = f(θ)
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Forward Kinematic Problem

• Given ,  what is ?

• Given  and , what is ?

• Given , what is ?

θ Ts→e = f(θ)

θ Δθ Ts→e(θ+Δθ) = f(θ + Δθ)

θ(t) ·Ts→e(θ) = ·f(θ) ·θ
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What is ?·Ts→e

• Derivative of 

• Checking the differential: 

(using composition rule as linear transformation)

•

Ts→e ∈ 𝕊𝔼(3)

To
s→e(t+Δt) − To

s→e(t) = To
e(t)→e(t+Δt)T

o
s→e(t) − To

s→e(t)

·To
s→e := lim

Δt→0

To
s→e(t+Δt) − To

s→e(t)

Δt
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Representation of ·Ts→e

• Since  can be represented by a 4x4 
matrix,  can also be represented by a 4x4 matrix

• Are there any structures of  and ?

Ts→e ∈ 𝕊𝔼(3)·Ts→e

Ts→e
·Ts→e
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 , Screw, Twist·Ts→e

• We will introduce later

- a 6D vector “screw”  to describe the rigid 
transformation, so that 

- a 6D vector “twist”  to describe the instant 
velocity

χ
T = eχ

ξ
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 and Jacobian·Ts→e

• In vector calculus, the Jacobian matrix of a vector-
valued function of several variables is the matrix of all 
its first-order partial derivatives.

• Given ,  is kind of a Jacobian 
matrix

·Ts→e(θ) = ·f(θ) ·θ ·f(θ)
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Inverse Kinematic Problem

• “Inverse kinematics makes use of the kinematics equations to 
determine the joint parameters that provide a desired 
configuration (position and rotation) for the end-effector.”

• Given , what is  by solving ?Ts→e θ Ts→e = f(θ)
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Inverse Kinematic Problem

• Given ,  what is  by solving ?

• Given  and , what is  by solving 
?

• Given , what is  by solving ?

Ts→e θ Ts→e = f(θ)

θ Ts→e(θ+Δθ) Δθ
Ts→e(θ+Δθ) = f(θ + Δθ)

·Ts→e(θ)
·θ(t) ·Ts→e(θ) = ·f(θ) ·θ
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Two Types of Approaches

• Analytical Solution

- Compute the inverse mapping of 

• Numerical Solution

- Solve  by numerical methods using 
gradients (Jacobian) 

Ts→e = f(θ)

Ts→e = f(θ) ·f(θ)
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Jacobian of Kinematic Chain



Geometric Jacobian

• Kinematics Equation: 

• There is a “minimal” representation of velocity, twist 
, such that  , where 

 is a differentiable mapping

• In this section, we will discuss 

·Ts→e(t) = ·f(θ) ·θ

ξe(t) ∈ ℝ6 ·Ts→e(t) = g(ξe(t))Ts→e(t)
g : ℝ6 ↦ ℝ4×4

ξe(t) = J(θ) ·θ
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Example

Ts
s→b(t) =

1 0 0 0
0 cos(αt) −sin(αt) 1 + sin(αt)
0 sin(αt) cos(αt) −cos(αt)
0 0 0 1
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Example

·Ts
s→b(t) =

0 0 0 0
0 −sin(αt) −cos(αt) cos(αt)
0 cos(αt) −sin(αt) sin(αt)
0 0 0 0

α
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Geometric Jacobian

• Recall

-

• Two commonly used observer frames:

- Spatial twist  

- Body twist  when 

·To
s→e := lim

Δt→0

To
s→e(t+Δt) − To

s→e(t)

Δt

ξs
e(t)

ξb
e(t) b = e(t)
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Spatial Geometric Jacobian

20

• Spatial Geometric Jacobian :

where  (n joints), 

• The -th column of  is , the twist when the movement is 
caused only by the -th joint while all other joints stay static

Js(θ)
ξs

e(t) = Js(θ) ·θ
θ ∈ ℝn Js(θ) ∈ ℝ6×n

i J(θ) i ̂ξs
e(t)

i



Spatial Geometric Jacobian
• Spatial Geometric Jacobian :

where  (n joints), 

• The -th column of  is , the twist when the movement is 
caused only by the -th joint while all other joints stay static

Js(θ)
ξs

e(t) = Js(θ) ·θ
θ ∈ ℝn Js(θ) ∈ ℝ6×n

i J(θ) i ̂ξs
e(t)

i
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• For example,  describes the 
motion of the green part, which is to 
revolute about Joint {2}

2 ̂ξs
e(t)



Body Geometric Jacobian
• Body Geometric Jacobian :

where 

• The -th column of  is , the twist when the movement is 
caused only by the -th joint while all other joints stay static

Jb(θ)
ξb

e(t) = Jb(θ) ·θ
Jb(θ) ∈ ℝ6×n

i J(θ) i ̂ξb
e(t)

i
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Body Geometric Jacobian
• Body Geometric Jacobian :

where 

• The -th column of  is , the twist when the movement is 
caused only by the -th joint while all other joints stay static

Jb(θ)
ξb

e(t) = Jb(θ) ·θ
Jb(θ) ∈ ℝ6×n

i J(θ) i ̂ξb
e(t)

i
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• For example,  describes the 
motion of the green part observed by 

, which is to revolute 
about Joint {2} 

2 ̂ξb
e(t)

ℱs = ℱ{0}



More about Jacobian

• Several libraries provide the computation of geometric 
Jacobian (e.g., pinocchio, pytorch_kinematics, 
polymetis) 

• Geometric Jacobian  usually refers to the 
mapping from joint velocities to twist

J(θ) ∈ ℝ6×n
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https://stack-of-tasks.github.io/pinocchio/
https://github.com/UM-ARM-Lab/pytorch_kinematics
https://github.com/facebookresearch/fairo/tree/main/polymetis


Inverse Kinematics



Inverse Kinematics

• Position query

- Given the forward kinematics  and the 
target pose , find  that satisfies 

• Velocity query

- Given the end-effector velocity (twist), find the joint 
velocity that satisfies 

• May have multiple solutions, a unique solution or no  
solution

Ts→e(θ)
Ttarget = 𝕊𝔼(3) θ

Ts→e(θ) = Ttarget

ξtarget = J(θ) ·θ
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Null Space of Jacobian

• Consider the velocity query IK task

• Recall that  for an -joint kinematic chain, 
where  is a  matrix

• When , the joint space is projected to a lower-
dimensional space and  must exist a null space

• As a result, IK may have infinite solutions (a special 
solution + any vector in the null space of )

• The null space adds flexibility to make motion plans

ξ = J(θ) ·θ n
J 6 × n
n > 6

J

J
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Analytical Solution
• Try to solve the equation  and get an 

analytical solution for 

- e.g., solve  and  for 

• For robots with more than 3-DoF, analytical solution 
can be very complex

- e.g., for a 6-DoF robot, you will need several pages 
to write down the formula

• Some useful libraries: IKFast, IKBT

Ttarget = T(θ)
θ

θ1 θ2

cos θ1 −sin θ1 0 −sin θ1(l2 + l3)
sin θ1 cos θ1 0 cos θ1(l2 + l3)

0 0 1 l1 − l4 + θ2

0 0 0 1

= Ttarget
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Numerical Solution

• Solving a nonlinear optimization problem 

• Standard numerical optimization algorithms can be 
utilized, e.g. Newton-Raphson and Levenberg-
Marquardt 

• Numerical IK leverages the geometric Jacobian 
ξ = J(θ) ·θ

29



Levenberg–Marquardt Algorithm
• Error between the desired pose and the current one:

 

• Differentiate: 

• There is a “minimal” representation, screw , 
such that  , where  is a 
differentiable mapping

Terr(θ) = T(θ)T−1
target ∈ 𝕊𝔼(3)

·Terr(θ) = Jerr(θ) ·θ

χ ∈ ℝ6

χ = G(T(θ)) G : ℝ4×4 ↦ ℝ6
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Levenberg–Marquardt Algorithm

• In LM algorithm, we iteratively update 

• In each iteration, we try to find a  that minimizes:

 

•  term stabilizes the optimization

• Closed-form solution ( ): 

 

• Solve  and then update  by: 

θ
Δθ

S(θ, Δθ) = ∥χerr + Jerr(θ)Δθ∥2 + λ∥Δθ∥2

λ
J = − Jerr

(JTJ + λI)Δθ = JTχerr

Δθ θ θ ← θ + Δθ
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Read by Yourself

Levenberg–Marquardt Algorithm

 

• Damping factor  is adjusted at each iteration:


• If  is decreasing, a smaller  (e.g., ) 
can be used.

- closer to the Gauss–Newton algorithm

• Otherwise, a larger  (e.g., ) can be used.

- closer to the gradient-descent algorithm

(JTJ + λI)Δθ = JTχerr

λ ≥ 0
S(θ, Δθ) λ λ ← 0.1λ

λ λ ← 10λ
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Read by Yourself

Levenberg–Marquardt Algorithm

• LM algorithm may converge to a local minima, initial 
 is very important:

- Sampling multiple  may boost the performance

• In most cases,  comes with limit constraints:

-

- A joint can only translate (or rotate) within the limit

- Invalid state rejection

- Clipping during the optimization iterations

θ0

θ0

θ
l[i] ≤ θ[i] ≤ r[i]
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Kinematic Singularity

Question: Is it always possible to move the end-effector to any 
direction  for a robot with ?

• Kinematic singularity: 

- A robot configuration where the robot’s end-effector loses 
the ability to move in one direction instantaneously

• If  at some , by ,  can only be  
in a linear space with dimension , losing its 
ability to move in some directions

• Note: Kinematic singularity does not mean that there exists a 
configuration that is not accessible (may get to the pose by 
some other motion trajectory)

̂ξ DoF ≥ 6

rank(J(θ)) < 6 θ Δξ = J(θ)Δθ Δξ
rank(J(θ)) < 6
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Kinematic Singularity

35https://www.sciencedirect.com/science/article/pii/S0736584507001068 
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