

Machine Learning for Robotics

Robot Kinematics

Jiayuan Gu

Slides prepared by Prof. Hao Su with the help of Yuzhe Qin, Minghua Liu, Fanbo Xiang, Jiayuan Gu

- Kinematics Equations
- Forward Kinematics
 - Jacobian of Kinematic Chain
- Inverse Kinematics
- Screw and Twist

Kinematics Equations

Kinematics Equations

• "Define how **input movement** at one or more joints specifies the configuration of the device, in order to **achieve a task position** or end-effector location."

• Map the joint space coordinate $\theta \in \mathbb{R}^n$ to a transformation matrix *T*:

$$T_{s \to e} = f(\theta)$$

 Calculated by composing transformations along the kinematic chain

Kinematics Equations

• The kinematics equations of a serial chain of *n* links, with joint parameters θ_i are given by

$$T = \prod_{i=1}^{n} Z_i X_i$$

- Joint matrices $Z_i(\theta_i)$ characterize the relative movement at each joint
- Link matrices $X_i(\theta_i)$ define the geometry of each link

Forward Kinematic Problem

- "Forward kinematics refers to the use of the kinematic equations of a robot to compute the position of the end-effector from specified values for the joint parameters."
- Given θ , what is $T_{s \to e} = f(\theta)$?

Forward Kinematic Problem

- Given θ , what is $T_{s \to e} = f(\theta)$?
- Given θ and $\Delta \theta$, what is $T_{s \to e(\theta + \Delta \theta)} = f(\theta + \Delta \theta)$?
- Given $\theta(t)$, what is $\dot{T}_{s \to e(\theta)} = \dot{f}(\theta) \dot{\theta}$?

What is $\dot{T}_{s \rightarrow e}$?

• Derivative of $T_{s \to e} \in \mathbb{SE}(3)$

• Checking the differential:

$$T^{o}_{s \to e(t+\Delta t)} - T^{o}_{s \to e(t)} = T^{o}_{e(t) \to e(t+\Delta t)} T^{o}_{s \to e(t)} - T^{o}_{s \to e(t)}$$
(using composition rule as linear transformation)

$$\dot{T}^{o}_{s \to e} := \lim_{\Delta t \to 0} \frac{T^{o}_{s \to e(t + \Delta t)} - T^{o}_{s \to e(t)}}{\Delta t}$$

Representation of $\dot{T}_{s \rightarrow e}$

• Since $T_{s \to e} \in \mathbb{SE}(3)$ can be represented by a 4x4 matrix, $\dot{T}_{s \to e}$ can also be represented by a 4x4 matrix

• Are there any structures of $T_{s \to e}$ and $\dot{T}_{s \to e}$?

 $T_{s \rightarrow \rho}$, Screw, Twist

- We will introduce later
 - a 6D vector "**screw**" χ to describe the rigid transformation, so that $T = e^{\chi}$
 - a 6D vector "**twist**" $\boldsymbol{\xi}$ to describe the instant velocity

$\dot{T}_{s \to e}$ and Jacobian

 In vector calculus, the Jacobian matrix of a vectorvalued function of several variables is the matrix of all its first-order partial derivatives.

$$\mathbf{J} = egin{bmatrix} rac{\partial \mathbf{f}}{\partial x_1} & \cdots & rac{\partial \mathbf{f}}{\partial x_n} \end{bmatrix} = egin{bmatrix}
abla^{\mathrm{T}} f_1 \ dots \
abla^{\mathrm{T}} f_m \end{bmatrix} = egin{bmatrix} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \ dots & \ddots & dots \ rac{\partial f_m}{\partial x_1} & \cdots & rac{\partial f_m}{\partial x_n} \end{bmatrix}$$

- Given $\dot{T}_{s \to e(\theta)} = \dot{f}(\theta) \dot{\theta}, \dot{f}(\theta)$ is kind of a Jacobian matrix

Inverse Kinematic Problem

- "Inverse kinematics makes use of the kinematics equations to determine the joint parameters that provide a desired configuration (position and rotation) for the end-effector."
- Given $T_{s \to e}$, what is θ by solving $T_{s \to e} = f(\theta)$?

Inverse Kinematic Problem

- Given $T_{s \to e}$, what is θ by solving $T_{s \to e} = f(\theta)$?
- Given θ and $T_{s \to e(\theta + \Delta \theta)}$, what is $\Delta \theta$ by solving $T_{s \to e(\theta + \Delta \theta)} = f(\theta + \Delta \theta)$?
- Given $\dot{T}_{s \to e(\theta)}$, what is $\dot{\theta}(t)$ by solving $\dot{T}_{s \to e(\theta)} = \dot{f}(\theta)\dot{\theta}$?

https://en.wikipedia.org/wiki/Inverse_kinematics

Two Types of Approaches

- Analytical Solution
 - Compute the inverse mapping of $T_{s \rightarrow e} = f(\theta)$

Numerical Solution

- Solve $T_{s \to e} = f(\theta)$ by numerical methods using gradients (Jacobian) $\dot{f}(\theta)$

Jacobian of Kinematic Chain

Geometric Jacobian

• Kinematics Equation: $\dot{T}_{s \to e(t)} = \dot{f}(\theta) \dot{\theta}$

• There is a "minimal" representation of velocity, **twist** $\xi_{e(t)} \in \mathbb{R}^6$, such that $\dot{T}_{s \to e(t)} = g(\xi_{e(t)})T_{s \to e(t)}$, where $g: \mathbb{R}^6 \mapsto \mathbb{R}^{4 \times 4}$ is a differentiable mapping

- In this section, we will discuss $\xi_{e(t)} = J(\theta) \dot{\theta}$

Example

$$T_{s \to b(t)}^{s} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha t) & -\sin(\alpha t) & 1 + \sin(\alpha t) \\ 0 & \sin(\alpha t) & \cos(\alpha t) & -\cos(\alpha t) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example

$$\dot{T}^{s}_{s \to b(t)} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -\sin(\alpha t) & -\cos(\alpha t) & \cos(\alpha t) \\ 0 & \cos(\alpha t) & -\sin(\alpha t) & \sin(\alpha t) \\ 0 & 0 & 0 & 0 \end{bmatrix} \alpha$$

Geometric Jacobian

Recall

$$\dot{T}^{o}_{s \to e} := \lim_{\Delta t \to 0} \frac{T^{o}_{s \to e(t + \Delta t)} - T^{o}_{s \to e(t)}}{\Delta t}$$

- Two commonly used observer frames:
 - Spatial twist $\xi_{e(t)}^s$

Body twist
$$\xi^b_{e(t)}$$
 when $b = e(t)$

Spatial Geometric Jacobian

• Spatial Geometric Jacobian $J^{s}(\theta)$:

 $\xi_{e(t)}^s = J^s(\theta)\dot{\theta}$

where $\theta \in \mathbb{R}^n$ (n joints), $J^s(\theta) \in \mathbb{R}^{6 \times n}$

• The *i*-th column of $J(\theta)$ is ${}^{i}\hat{\xi}^{s}_{e(t)}$, the twist when the movement is caused only by the *i*-th joint **while all other joints stay static**

Spatial Geometric Jacobian

• Spatial Geometric Jacobian $J^{s}(\theta)$:

 $\xi_{e(t)}^{s} = J^{s}(\theta)\dot{\theta}$

where $\theta \in \mathbb{R}^n$ (n joints), $J^s(\theta) \in \mathbb{R}^{6 \times n}$

• The *i*-th column of $J(\theta)$ is ${}^{i}\hat{\xi}^{s}_{e(t)}$, the twist when the movement is caused only by the *i*-th joint **while all other joints stay static**

• For example, ${}^2\hat{\xi}^s_{e(t)}$ describes the motion of the green part, which is to revolute about Joint {2}

Body Geometric Jacobian

• Body Geometric Jacobian $J^b(\theta)$:

$$\xi^b_{e(t)} = J^b(\theta)\dot{\theta}$$

where $J^b(\theta) \in \mathbb{R}^{6 \times n}$

• The *i*-th column of $J(\theta)$ is ${}^{i}\hat{\xi}^{b}_{e(t)}$, the twist when the movement is caused only by the *i*-th joint **while all other joints stay static**

Body Geometric Jacobian

• Body Geometric Jacobian $J^b(\theta)$:

$$\xi^b_{e(t)} = J^b(\theta)\dot{\theta}$$

where $J^b(\theta) \in \mathbb{R}^{6 \times n}$

• The *i*-th column of $J(\theta)$ is ${}^{i}\hat{\xi}^{b}_{e(t)}$, the twist when the movement is caused only by the *i*-th joint **while all other joints stay static**

• For example, ${}^{2}\hat{\xi}^{b}_{e(t)}$ describes the motion of the green part observed by $\mathscr{F}_{s} = \mathscr{F}_{\{0\}}$, which is to revolute about Joint {2}

More about Jacobian

 Several libraries provide the computation of geometric Jacobian (e.g., <u>pinocchio</u>, <u>pytorch_kinematics</u>, <u>polymetis</u>)

• Geometric Jacobian $J(\theta) \in \mathbb{R}^{6 \times n}$ usually refers to the mapping from **joint velocities** to **twist**

Inverse Kinematics

Inverse Kinematics

- Position query
 - Given the forward kinematics $T_{s \to e}(\theta)$ and the target pose $T_{target} = \mathbb{SE}(3)$, find θ that satisfies $T_{s \to e}(\theta) = T_{target}$
- Velocity query
 - Given the end-effector velocity (twist), find the joint velocity that satisfies $\xi_{target} = J(\theta)\dot{\theta}$
- May have multiple solutions, a unique solution or no solution

Null Space of Jacobian

- Consider the velocity query IK task
- Recall that $\xi = J(\theta)\dot{\theta}$ for an *n*-joint kinematic chain, where J is a $6 \times n$ matrix
- When n > 6, the joint space is projected to a lower-dimensional space and J must exist a null space
- As a result, IK may have infinite solutions (a special solution + any vector in the null space of J)
- The null space adds flexibility to make motion plans

Analytical Solution

- Try to solve the equation $T_{target} = T(\theta)$ and get an analytical solution for θ

 $- \text{ e.g., solve } \theta_1 \text{ and } \theta_2 \text{ for } \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 & 0 & -\sin \theta_1 (l_2 + l_3) \\ \sin \theta_1 & \cos \theta_1 & 0 & \cos \theta_1 (l_2 + l_3) \\ 0 & 0 & 1 & l_1 - l_4 + \theta_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} = T_{target}$

- For robots with more than 3-DoF, analytical solution can be very complex
 - e.g., for a 6-DoF robot, you will need several pages to write down the formula
- Some useful libraries: IKFast, IKBT

Numerical Solution

- Solving a nonlinear optimization problem
- Standard numerical optimization algorithms can be utilized, e.g. Newton-Raphson and Levenberg-Marquardt
- Numerical IK leverages the geometric Jacobian $\xi = J(\theta) \dot{\theta}$

• Error between the desired pose and the current one:

$$T_{err}(\theta) = T(\theta)T_{target}^{-1} \in \mathbb{SE}(3)$$

• Differentiate:
$$\dot{T}_{err}(\theta) = J_{err}(\theta)\dot{\theta}$$

• There is a "minimal" representation, screw $\chi \in \mathbb{R}^6$, such that $\chi = G(T(\theta))$, where $G : \mathbb{R}^{4 \times 4} \mapsto \mathbb{R}^6$ is a differentiable mapping

- In LM algorithm, we iteratively update $\boldsymbol{\theta}$
- In each iteration, we try to find a $\Delta\theta$ that minimizes:

$$S(\theta, \Delta \theta) = \|\chi_{err} + J_{err}(\theta) \Delta \theta\|^2 + \lambda \|\Delta \theta\|^2$$

- λ term stabilizes the optimization
- Closed-form solution $(J = -J_{err})$:

$$(J^{\mathrm{T}}J + \lambda I)\Delta\theta = J^{\mathrm{T}}\chi_{err}$$

• Solve $\Delta \theta$ and then update θ by: $\theta \leftarrow \theta + \Delta \theta$

$$(J^{\mathrm{T}}J + \lambda I)\Delta\theta = J^{\mathrm{T}}\chi_{err}$$

- Damping factor $\lambda \ge 0$ is adjusted at each iteration:
- If $S(\theta, \Delta \theta)$ is decreasing, a smaller λ (e.g., $\lambda \leftarrow 0.1\lambda$) can be used.
 - closer to the Gauss–Newton algorithm
- Otherwise, a larger λ (e.g., $\lambda \leftarrow 10\lambda$) can be used.
 - closer to the gradient-descent algorithm

- LM algorithm may converge to a local minima, initial θ_0 is very important:
 - Sampling multiple θ_0 may boost the performance
- In most cases, θ comes with limit constraints:
 - $l[i] \le \theta[i] \le r[i]$
 - A joint can only translate (or rotate) within the limit
 - Invalid state rejection
 - Clipping during the optimization iterations

Read by Yourself

Kinematic Singularity

Question: Is it always possible to move the end-effector to any direction $\hat{\xi}$ for a robot with $\text{DoF} \ge 6$?

- Kinematic singularity:
 - A **robot configuration** where the robot's end-effector loses the ability to move in one direction instantaneously
- If $\operatorname{rank}(J(\theta)) < 6$ at some θ , by $\Delta \xi = J(\theta) \Delta \theta$, $\Delta \xi$ can only be in a linear space with dimension $\operatorname{rank}(J(\theta)) < 6$, losing its ability to move in some directions
- Note: Kinematic singularity does not mean that there exists a configuration that is not accessible (may get to the pose by some other motion trajectory)

Kinematic Singularity

