
Robot Kinematics

Machine Learning for Robotics

Jiayuan Gu
Slides prepared by Prof. Hao Su with the help of

Yuzhe Qin, Minghua Liu, Fanbo Xiang, Jiayuan Gu

Agenda

• Kinematics Equations

• Forward Kinematics

- Jacobian of Kinematic Chain

• Inverse Kinematics

• Screw and Twist

2

Kinematics Equations

Kinematics Equations
• “Define how input movement at one or more joints

specifies the configuration of the device, in order to
achieve a task position or end-effector location.”

• Map the joint space coordinate to a
transformation matrix :

• Calculated by composing transformations along the
kinematic chain

θ ∈ ℝn

T
Ts→e = f(θ)

4https://en.wikipedia.org/wiki/Kinematics_equations

https://en.wikipedia.org/wiki/Kinematics_equations

Kinematics Equations

• The kinematics equations of a serial chain of links,
with joint parameters are given by

• Joint matrices characterize the relative
movement at each joint

• Link matrices define the geometry of each link

n
θi

T =
n

∏
i=1

ZiXi

Zi(θi)

Xi(θi)

5https://en.wikipedia.org/wiki/Kinematics_equations

https://en.wikipedia.org/wiki/Kinematics_equations

Forward Kinematic Problem

• “Forward kinematics refers to the use of the kinematic equations
of a robot to compute the position of the end-effector from
specified values for the joint parameters.”

• Given , what is ?θ Ts→e = f(θ)

6https://en.wikipedia.org/wiki/Forward_kinematics

https://en.wikipedia.org/wiki/Forward_kinematics

Forward Kinematic Problem

• Given , what is ?

• Given and , what is ?

• Given , what is ?

θ Ts→e = f(θ)

θ Δθ Ts→e(θ+Δθ) = f(θ + Δθ)

θ(t) ·Ts→e(θ) = ·f(θ) ·θ

7

What is ?·Ts→e

• Derivative of

• Checking the differential:

(using composition rule as linear transformation)

•

Ts→e ∈ 𝕊𝔼(3)

To
s→e(t+Δt) − To

s→e(t) = To
e(t)→e(t+Δt)T

o
s→e(t) − To

s→e(t)

·To
s→e := lim

Δt→0

To
s→e(t+Δt) − To

s→e(t)

Δt
8

Representation of ·Ts→e

• Since can be represented by a 4x4
matrix, can also be represented by a 4x4 matrix

• Are there any structures of and ?

Ts→e ∈ 𝕊𝔼(3)·Ts→e

Ts→e
·Ts→e

9

 , Screw, Twist·Ts→e

• We will introduce later

- a 6D vector “screw” to describe the rigid
transformation, so that

- a 6D vector “twist” to describe the instant
velocity

χ
T = eχ

ξ

10

 and Jacobian·Ts→e

• In vector calculus, the Jacobian matrix of a vector-
valued function of several variables is the matrix of all
its first-order partial derivatives.

• Given , is kind of a Jacobian
matrix

·Ts→e(θ) = ·f(θ) ·θ ·f(θ)

11https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

Inverse Kinematic Problem

• “Inverse kinematics makes use of the kinematics equations to
determine the joint parameters that provide a desired
configuration (position and rotation) for the end-effector.”

• Given , what is by solving ?Ts→e θ Ts→e = f(θ)

12https://en.wikipedia.org/wiki/Inverse_kinematics

https://en.wikipedia.org/wiki/Inverse_kinematics

Inverse Kinematic Problem

• Given , what is by solving ?

• Given and , what is by solving
?

• Given , what is by solving ?

Ts→e θ Ts→e = f(θ)

θ Ts→e(θ+Δθ) Δθ
Ts→e(θ+Δθ) = f(θ + Δθ)

·Ts→e(θ)
·θ(t) ·Ts→e(θ) = ·f(θ) ·θ

13https://en.wikipedia.org/wiki/Inverse_kinematics

https://en.wikipedia.org/wiki/Inverse_kinematics

Two Types of Approaches

• Analytical Solution

- Compute the inverse mapping of

• Numerical Solution

- Solve by numerical methods using
gradients (Jacobian)

Ts→e = f(θ)

Ts→e = f(θ) ·f(θ)

14

Jacobian of Kinematic Chain

Geometric Jacobian

• Kinematics Equation:

• There is a “minimal” representation of velocity, twist
, such that , where

 is a differentiable mapping

• In this section, we will discuss

·Ts→e(t) = ·f(θ) ·θ

ξe(t) ∈ ℝ6 ·Ts→e(t) = g(ξe(t))Ts→e(t)
g : ℝ6 ↦ ℝ4×4

ξe(t) = J(θ) ·θ

16

Example

Ts
s→b(t) =

1 0 0 0
0 cos(αt) −sin(αt) 1 + sin(αt)
0 sin(αt) cos(αt) −cos(αt)
0 0 0 1

17

Example

·Ts
s→b(t) =

0 0 0 0
0 −sin(αt) −cos(αt) cos(αt)
0 cos(αt) −sin(αt) sin(αt)
0 0 0 0

α

18

Geometric Jacobian

• Recall

-

• Two commonly used observer frames:

- Spatial twist

- Body twist when

·To
s→e := lim

Δt→0

To
s→e(t+Δt) − To

s→e(t)

Δt

ξs
e(t)

ξb
e(t) b = e(t)

19

Spatial Geometric Jacobian

20

• Spatial Geometric Jacobian :

where (n joints),

• The -th column of is , the twist when the movement is
caused only by the -th joint while all other joints stay static

Js(θ)
ξs

e(t) = Js(θ) ·θ
θ ∈ ℝn Js(θ) ∈ ℝ6×n

i J(θ) i ̂ξs
e(t)

i

Spatial Geometric Jacobian
• Spatial Geometric Jacobian :

where (n joints),

• The -th column of is , the twist when the movement is
caused only by the -th joint while all other joints stay static

Js(θ)
ξs

e(t) = Js(θ) ·θ
θ ∈ ℝn Js(θ) ∈ ℝ6×n

i J(θ) i ̂ξs
e(t)

i

21

• For example, describes the
motion of the green part, which is to
revolute about Joint {2}

2 ̂ξs
e(t)

Body Geometric Jacobian
• Body Geometric Jacobian :

where

• The -th column of is , the twist when the movement is
caused only by the -th joint while all other joints stay static

Jb(θ)
ξb

e(t) = Jb(θ) ·θ
Jb(θ) ∈ ℝ6×n

i J(θ) i ̂ξb
e(t)

i

22

Body Geometric Jacobian
• Body Geometric Jacobian :

where

• The -th column of is , the twist when the movement is
caused only by the -th joint while all other joints stay static

Jb(θ)
ξb

e(t) = Jb(θ) ·θ
Jb(θ) ∈ ℝ6×n

i J(θ) i ̂ξb
e(t)

i

23

• For example, describes the
motion of the green part observed by

, which is to revolute
about Joint {2}

2 ̂ξb
e(t)

ℱs = ℱ{0}

More about Jacobian

• Several libraries provide the computation of geometric
Jacobian (e.g., pinocchio, pytorch_kinematics,
polymetis)

• Geometric Jacobian usually refers to the
mapping from joint velocities to twist

J(θ) ∈ ℝ6×n

24

https://stack-of-tasks.github.io/pinocchio/
https://github.com/UM-ARM-Lab/pytorch_kinematics
https://github.com/facebookresearch/fairo/tree/main/polymetis

Inverse Kinematics

Inverse Kinematics

• Position query

- Given the forward kinematics and the
target pose , find that satisfies

• Velocity query

- Given the end-effector velocity (twist), find the joint
velocity that satisfies

• May have multiple solutions, a unique solution or no
solution

Ts→e(θ)
Ttarget = 𝕊𝔼(3) θ

Ts→e(θ) = Ttarget

ξtarget = J(θ) ·θ

26

Null Space of Jacobian

• Consider the velocity query IK task

• Recall that for an -joint kinematic chain,
where is a matrix

• When , the joint space is projected to a lower-
dimensional space and must exist a null space

• As a result, IK may have infinite solutions (a special
solution + any vector in the null space of)

• The null space adds flexibility to make motion plans

ξ = J(θ) ·θ n
J 6 × n
n > 6

J

J

27

Analytical Solution
• Try to solve the equation and get an

analytical solution for

- e.g., solve and for

• For robots with more than 3-DoF, analytical solution
can be very complex

- e.g., for a 6-DoF robot, you will need several pages
to write down the formula

• Some useful libraries: IKFast, IKBT

Ttarget = T(θ)
θ

θ1 θ2

cos θ1 −sin θ1 0 −sin θ1(l2 + l3)
sin θ1 cos θ1 0 cos θ1(l2 + l3)

0 0 1 l1 − l4 + θ2

0 0 0 1

= Ttarget

28

Numerical Solution

• Solving a nonlinear optimization problem

• Standard numerical optimization algorithms can be
utilized, e.g. Newton-Raphson and Levenberg-
Marquardt

• Numerical IK leverages the geometric Jacobian
ξ = J(θ) ·θ

29

Levenberg–Marquardt Algorithm
• Error between the desired pose and the current one:

• Differentiate:

• There is a “minimal” representation, screw ,
such that , where is a
differentiable mapping

Terr(θ) = T(θ)T−1
target ∈ 𝕊𝔼(3)

·Terr(θ) = Jerr(θ) ·θ

χ ∈ ℝ6

χ = G(T(θ)) G : ℝ4×4 ↦ ℝ6

30

Levenberg–Marquardt Algorithm

• In LM algorithm, we iteratively update

• In each iteration, we try to find a that minimizes:

• term stabilizes the optimization

• Closed-form solution ():

• Solve and then update by:

θ
Δθ

S(θ, Δθ) = ∥χerr + Jerr(θ)Δθ∥2 + λ∥Δθ∥2

λ
J = − Jerr

(JTJ + λI)Δθ = JTχerr

Δθ θ θ ← θ + Δθ

31

Read by Yourself

Levenberg–Marquardt Algorithm

• Damping factor is adjusted at each iteration:

• If is decreasing, a smaller (e.g.,)
can be used.

- closer to the Gauss–Newton algorithm

• Otherwise, a larger (e.g.,) can be used.

- closer to the gradient-descent algorithm

(JTJ + λI)Δθ = JTχerr

λ ≥ 0
S(θ, Δθ) λ λ ← 0.1λ

λ λ ← 10λ

32

Read by Yourself

Levenberg–Marquardt Algorithm

• LM algorithm may converge to a local minima, initial
 is very important:

- Sampling multiple may boost the performance

• In most cases, comes with limit constraints:

-

- A joint can only translate (or rotate) within the limit

- Invalid state rejection

- Clipping during the optimization iterations

θ0

θ0

θ
l[i] ≤ θ[i] ≤ r[i]

33

Kinematic Singularity

Question: Is it always possible to move the end-effector to any
direction for a robot with ?

• Kinematic singularity:

- A robot configuration where the robot’s end-effector loses
the ability to move in one direction instantaneously

• If at some , by , can only be
in a linear space with dimension , losing its
ability to move in some directions

• Note: Kinematic singularity does not mean that there exists a
configuration that is not accessible (may get to the pose by
some other motion trajectory)

̂ξ DoF ≥ 6

rank(J(θ)) < 6 θ Δξ = J(θ)Δθ Δξ
rank(J(θ)) < 6

34

Kinematic Singularity

35https://www.sciencedirect.com/science/article/pii/S0736584507001068

https://www.sciencedirect.com/science/article/pii/S0736584507001068

