

Machine Learning for Robotics

Rigid Transformation

Jiayuan Gu

Slides prepared by Prof. Hao Su with the help of Yuzhe Qin, Minghua Liu, Fanbo Xiang, Jiayuan Gu

Example: End-Effector Control

A robot can be controlled by specifying its end-effector pose

Pose: Transformation between Frames

Where is the car in the world?

Where is the car B observed by the driver of the car A?

Describe Rigid-Body Motion

What's the motion of the car when you observe at A?

What's the motion of the car when you observe at the world frame?

- Rigid Transformation
- Rigid Transformation as Linear Transformation
- Rigid Transformation for Coordinate Transformation

Rigid Transformation

Notation Convention

- An observer **records** the position of any point in the space **using a frame** \mathcal{F}_s
- We use ordinary letters to denote points (e.g., p), and bold letters to dente vectors (e.g., v)
- When writing equations, we add a superscript to symbols to denote the recording frame, e.g.,

$$o_b^s = o_s^s + \mathbf{t}_{s \to b}^s$$

Frames

- We attach a frame \mathscr{F}_b (body frame) tightly to a rigid body of interest, and \mathscr{F}_b moves along with the object
- \mathcal{F}_s is usually a static frame (spatial frame)

Rigid Transformation (Pose)

• The pose of the *rigid* object relative to \mathscr{F}_s :

How to **transform** \mathcal{F}_s so that it overlaps with \mathcal{F}_h ?

Rigid Transformation (Motion)

- The motion of the rigid object from \mathscr{F}_s $(\mathscr{F}_{b(0)})$ to \mathscr{F}_b $(\mathscr{F}_{b(t)})$

How to **transform** \mathcal{F}_s so that it overlaps with \mathcal{F}_b ?

Rigid Transformation

- We first translate \mathscr{F}_s by $\mathbf{t}_{s \to b}$ to align o_s and o_b
- And then rotate by $R_{s \to b}$ to align $\{\mathbf{x}_s, \mathbf{y}_s, \mathbf{z}_s\}$ and $\{\mathbf{x}_b, \mathbf{y}_b, \mathbf{z}_b\}$

Rigid Transformation

- "In mathematics, a rigid transformation is a geometric transformation of a Euclidean space that preserves the Euclidean distance between every pair of points."
- "The rigid transformations include rotations, translations, reflections, or any sequence of these."
- "To avoid ambiguity, a transformation that preserves handedness is known as a rigid motion, a Euclidean motion, or a proper rigid transformation."

Describe Rigid Transformation

- We have,
 - $o_b^s = o_s^s + \mathbf{t}_{s \to b}^s$ • $[\mathbf{x}_b^s, \mathbf{y}_b^s, \mathbf{z}_b^s] = R_{s \to b}^s [\mathbf{x}_s^s, \mathbf{y}_s^s, \mathbf{z}_s^s]$

• Therefore,

•
$$\mathbf{t}_{s \to b}^{s} = o_{b}^{s}$$

• $R_{s \to b}^{s} = [\mathbf{x}_{b}^{s}, \mathbf{y}_{b}^{s}, \mathbf{z}_{b}^{s}] \in \mathbb{R}^{3 \times 3}$

Linear Transformation

- A linear transformation of a vector space, $L : \mathbb{R}^n \to \mathbb{R}^n$, preserves linear combinations, $L(\mathbb{V}) = L(a\mathbb{v} + b\mathbb{w}) = aL(\mathbb{v}) + bL(\mathbb{w})$
- A linear transformation is a rigid transformation if it satisfies the condition, $d(L(\mathbf{v}), L(\mathbf{w})) = d(\mathbf{v}, \mathbf{w})$

• $(R_{s \rightarrow b}, \mathbf{t}_{s \rightarrow b})$ transforms any **point** in the *whole space* by the following equation:

$$x'^{s} = R^{s}_{s \to b} x^{s} + \mathbf{t}^{s}_{s \to b}$$

• $(R_{s \rightarrow b}, \mathbf{t}_{s \rightarrow b})$ also transforms any frame (origin + basis vectors)

- Suppose $\mathscr{F}_p^s = \{p^s, (\mathbf{x}_p^s, \mathbf{y}_p^s, \mathbf{z}_p^s)\}$ is a frame at an arbitrary point p^s
- Then, the new origin is: $p'^s = R^s_{s \to b} p^s + \mathbf{t}^s_{s \to b}$

- Suppose $\mathscr{F}_p^s = \{p^s, (\mathbf{x}_p^s, \mathbf{y}_p^s, \mathbf{z}_p^s)\}$ is a frame at an arbitrary point p^s
- Then, the new origin is: $p'^{s} = R^{s}_{s \to b}p^{s} + \mathbf{t}^{s}_{s \to b}$
- How about the basis vectors of the frame?
 - Let's consider 3 points $\{p^s + \mathbf{x}_p^s, p^s + \mathbf{y}_p^s, p^s + \mathbf{z}_p^s\}$
 - Then, a new basis (e.g., x^s_p) after transformation are:

- Suppose $\mathscr{F}_p^s = \{p^s, (\mathbf{x}_p^s, \mathbf{y}_p^s, \mathbf{z}_p^s)\}$ is a frame at an arbitrary point p^s
- Then, the new origin is: $p'^{s} = R^{s}_{s \to b}p^{s} + \mathbf{t}^{s}_{s \to b}$
- How about the basis vectors of the frame?
 - Let's consider 3 points $\{p^s + \mathbf{x}_p^s, p^s + \mathbf{y}_p^s, p^s + \mathbf{z}_p^s\}$
 - Then, a new basis (e.g., x^s_p) after transformation are:

$$\mathbf{x}_{p'}^{s} = R_{s \to b}^{s}(p^{s} + \mathbf{x}_{p}^{s}) + t_{s \to b}^{s} - p'^{s} = R_{s \to b}^{s}\mathbf{x}_{p}^{s}$$

• So the new frame is: $\mathscr{F}_{p'}^s = \{p'^s, R_{s \to b}^s [\mathbf{x}_p^s, \mathbf{y}_p^s, \mathbf{z}_p^s]\}$

$(R_{s \rightarrow b}, \mathbf{t}_{s \rightarrow b})$ for Coordinate Transformation

Coordinate Transformation

• There is a point p^b observed in the body frame \mathscr{F}_b , we want to know its position in the spatial frame \mathscr{F}_s

- Imagine a process: \mathscr{F}_b moves from \mathscr{F}_s $(\mathscr{F}_{b(0)})$ to the current location $\mathscr{F}_{b(t)}$ within a period t.
- This is how we define $(R_{s \to b}^{s}, \mathbf{t}_{s \to b}^{s})$.

• Since p moves along with \mathscr{F}_b during [0, t] $p_t^s = R_{s \to b}^s p_0^s + \mathbf{t}_{s \to b}^s$ • Note that $p_0^s = p_t^b$, therefore:

$$p_t^s = R_{s \to b}^s p_t^b + \mathbf{t}_{s \to b}^s$$

Homogenous Coordinates

• Homogeneous coordinate for 3D Space:

$$\tilde{x} := \begin{bmatrix} x \\ 1 \end{bmatrix} \in \mathbb{R}^4$$

• Homogeneous transformation matrix:

$$T_{s \to b}^{s} = \begin{bmatrix} R_{s \to b}^{s} & \mathbf{t}_{s \to b}^{s} \\ 0 & 1 \end{bmatrix}$$

• Coordinate transformation under linear form:

$$\tilde{x}^s = T^s_{s \to b} \tilde{x}^b$$

• Ignore $\widetilde{}$ for simplicity in the future.

Homogenous Coordinates

- The coordinate transformation works for any choice of \mathscr{F}_s and \mathscr{F}_b
- As a general rule, we have:

$$x^1 = T^1_{1 \to 2} x^2$$

Some Rules of Homogenous Coordinate Transformation

By
$$x^1 = T_{1 \to 2}^1 x^2$$
, we have $x^2 = T_{2 \to 1}^2 x^1$ and $x^3 = T_{3 \to 2}^3 x^2$.
Therefore, $x^3 = T_{3 \to 2}^3 T_{2 \to 1}^2 x^1$. But $x^3 = T_{3 \to 1}^3 x^1$
• Composition rule: $T_{3 \to 1}^3 = T_{3 \to 2}^3 T_{2 \to 1}^2$

By
$$x^1 = T_{1 \to 2}^1 x^2$$
, we have $x^2 = (T_{1 \to 2}^1)^{-1} x^1$
Change of observer's frame: $T_{2 \to 1}^2 = (T_{1 \to 2}^1)^{-1}$

A simple 2 DoF robot arm

revolute (θ_1)

base

$$T_{0\to1}^{0} = \begin{bmatrix} \cos\theta_{1} & -\sin\theta_{1} & 0 & -l_{2}\sin\theta_{1} \\ \sin\theta_{1} & \cos\theta_{1} & 0 & l_{2}\cos\theta_{1} \\ 0 & 0 & 1 & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

revolute (θ_1)

link1

link2

$$T_{1 \to 2}^{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & l_{3} \\ 0 & 0 & 1 & \theta_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

prismatic (θ_2)

link2

end_effector

$$T_{2\to3}^2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -l_4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

base

end_effector

$$T_{0\to3}^{0} = T_{0\to1}^{0} T_{1\to2}^{1} T_{2\to3}^{2} = \begin{bmatrix} \cos\theta_{1} & -\sin\theta_{1} & 0 & -\sin\theta_{1}(l_{2}+l_{3}) \\ \sin\theta_{1} & \cos\theta_{1} & 0 & \cos\theta_{1}(l_{2}+l_{3}) \\ 0 & 0 & 1 & l_{1}-l_{4}+\theta_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$T_{1\rightarrow 2}^{s}$

- We have introduced the notations when the observer is recording via \mathcal{F}_s or \mathcal{F}_b
 - $T_{s \to b}^{s}$ (record the frame alignment from \mathcal{F}_{s} to \mathcal{F}_{b})
 - By the change of observer's frame, we introduced $T_{b\rightarrow s}^{b} = (T_{s\rightarrow b}^{s})^{-1}$
- Next, we define the notion of $T_{1\to 2}^s$, which is how we **record** an arbitrary transformation from \mathscr{F}_1 to \mathscr{F}_2 in \mathscr{F}_s

Composition as a Homogeneous Linear Transformation

• The composition rule is intuitive from the perspective of linear transformation:

$$T_{1 \to 2}^s = T_{3 \to 2}^s T_{1 \to 3}^s$$

• Try to prove:

$$T_{1 \to 2}^s = T_{s \to 2}^s T_{1 \to s}^1$$

Change Observer's Frame with Similarity Transformation

• Given $T_{1 \rightarrow 2}^s$, what is $T_{1 \rightarrow 2}^b$?

$$\begin{split} T^{s}_{1 \to 2} T^{s}_{s \to 1} &= T^{s}_{s \to 2} \quad \text{Composition as Linear Transformation} \\ T^{s}_{1 \to 2} T^{s}_{s \to b} T^{b}_{h \to 1} &= T^{s}_{s \to b} T^{b}_{h \to 2} \quad \text{Composition as Coordinate Transformation} \end{split}$$

$$T_{1 \to 2}^{s} T_{s \to b}^{s} T_{b \to 1}^{b} = T_{s \to b}^{s} T_{1 \to 2}^{b} T_{b \to 1}^{b}$$
 Composition as Linear Transformation

$$T_{1 \to 2}^{s} T_{s \to b}^{s} = T_{s \to b}^{s} T_{1 \to 2}^{b}$$
$$T_{1 \to 2}^{s} = T_{s \to b}^{s} T_{1 \to 2}^{b} (T_{s \to b}^{s})^{-1}$$

• Similarity Transformation changes the **superscript** $B = X^{-1}AX$: Similarity Transformation

A Special Case

• By $T_{1\to 2}^s = T_{s\to b}^s T_{1\to 2}^b (T_{s\to b}^s)^{-1}$,

- If
$$\mathscr{F}_1 = \mathscr{F}_s$$
 and $\mathscr{F}_2 = \mathscr{F}_b$, $T^s_{s \to b} = T^b_{s \to b}!$

- Therefore, we often see the abbreviated notations:
 - $T_b^s \equiv T_{s \to b}^s$
 - $T_{s \to b} \equiv T_{s \to b}^s$
 - $T_b \equiv T_{s \to b}^s$
- The above equation can therefore be written as:

$$T_{1\to2}^{s} = T_{s\tob}T_{1\to2}^{b}(T_{s\tob})^{-1}$$

- Consider a camera with frame \mathcal{F}_c observing a red car
- Denote the current frame of the red car as \mathcal{F}_1

$$T_{c \to 1}^{c} = \begin{bmatrix} \cos \frac{\pi}{2} & -\sin \frac{\pi}{2} & 0 & l \\ \sin \frac{\pi}{2} & \cos \frac{\pi}{2} & 0 & -l \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Then the red car move to a new frame \mathcal{F}_2

 $T_{c \to 2}^{c} = \begin{bmatrix} \cos \pi & -\sin \pi & 0 & l \\ \sin \pi & \cos \pi & 0 & l \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

• By the composition rule of coordinate transformation: $T_{c \to 2}^c = T_{c \to 1}^c T_{1 \to 2}^1$

$$T_{1\to 2}^1 = (T_{c\to 1}^c)^{-1} T_{c\to 2}^c =$$

$$\begin{bmatrix} \cos\frac{\pi}{2} & -\sin\frac{\pi}{2} & 0 & 2l \\ \sin\frac{\pi}{2} & \cos\frac{\pi}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• By the composition rule of coordinate transformation: $T_{c \to 2}^{c} = T_{c \to 1}^{c} T_{1 \to 2}^{1}$

 $T_{1\to2}^{1} = (T_{c\to1}^{c})^{-1} T_{c\to2}^{c} = \begin{bmatrix} \cos\frac{\pi}{2} & -\sin\frac{\pi}{2} & 0 & 2l \\ \sin\frac{\pi}{2} & \cos\frac{\pi}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

• The movement from \mathscr{F}_1 to \mathscr{F}_2 can also be represented as a linear transformation from \mathscr{F}_1 to \mathscr{F}_2 , recorded by frame c, denoted as $T_{1 \rightarrow 2}^c$

• With similarity transformation:

$$T_{1\to2}^c = T_{c\to1}^c T_{1\to2}^1 (T_{c\to1}^c)^{-1} = \begin{bmatrix} \cos\frac{\pi}{2} & -\sin\frac{\pi}{2} & 0 & 0\\ \sin\frac{\pi}{2} & \cos\frac{\pi}{2} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Note: translation in $T_{1\rightarrow 2}^c$ is all zero! Why?

• Transformation $T_{1\rightarrow 2}^c$ can be regarded as rotating about z-axis by 90 degree

$$T_{1\to2}^c = \begin{bmatrix} \cos\frac{\pi}{2} & -\sin\frac{\pi}{2} & 0 & 0\\ \sin\frac{\pi}{2} & \cos\frac{\pi}{2} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• When observer is recording in the camera frame \mathcal{F}_c , the red car is rotated about the z-axis of camera frame c through +90 degree

Additional Notes by the Example

- $T_{1 \to 2}^{s}$ is **NOT** to record the transformation by first translating \mathscr{F}_{1} to \mathscr{F}_{2} and then rotating (this recording convention **only** works when $\mathscr{F}_{1} = \mathscr{F}_{s}$). It is based on the rule $T_{1 \to 2}^{s} := T_{s \to 2}^{s} T_{1 \to s}^{1}$
- An observer chooses its way to decompose $T_{1\to 2}$ into $R_{1\to 2}$ and ${\bf t}_{1\to 2}$ based upon its own frame choice
- We will discuss the "canonical" decomposition next time

Additional Notes by the Example

 The linear transformation view allows us to discuss the movement of bodies conveniently (without worrying about the change of observer):

$$T_{1 \to 2}^s = T_{3 \to 2}^s T_{1 \to 3}^s$$

• Suppose a body is moving. Then,

$$T^{s}_{t_{0} \to t + \Delta t} = T^{s}_{t \to t + \Delta t} T^{s}_{t_{0} \to t}$$

where *t* parameterizes time.

Summary

- Basic notation:
 - $T^s_{s \to b}$: Record the motion of frame alignment from \mathscr{F}_s to \mathscr{F}_b in \mathscr{F}_s
- Coordinate transformation
 - $T_{c \to a}^{c} = T_{c \to b}^{c} T_{b \to a}^{b}$: Composition for coordinate transformation
 - $T_{b \to s}^b = (T_{s \to b}^s)^{-1}$: Change of frame for \mathscr{F}_s to \mathscr{F}_b motion
- Linear transformation

- $T_{1 \to 2}^s := T_{s \to 2}^s T_{1 \to s}^1$: Record the motion of frame alignment from \mathscr{F}_1 to \mathscr{F}_2 in \mathscr{F}_s

- $T_{c \to a}^{s} = T_{b \to a}^{s} T_{c \to b}^{s}$: Composition as a linear transformation
- $T_{1\to 2}^s = T_{s\to b}T_{1\to 2}^b(T_{s\to b})^{-1}$: Change of frame for \mathscr{F}_1 -to- \mathscr{F}_2 motion