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Some Further Clarifications on Velocity

e Consider we observe the motion of a moving body b(¢) from a moving observer's frame o(t), and the
recording of motion is relative to s(t).

e velocity observed from an arbitrary frame (e.g., point linear velocity, angular velocity, and twist) is:

(o) o(to) o(to)

'v-‘-‘(tn)—*b(tﬂ) - E s(t)—b(t) t:t[), where ps(t)—:»b(t) — pﬂ(ta)—}b(f) - po(tg)—:»s(t)
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Some Further Clarifications on Velocity

e Consider we observe the motion of a moving body b(¢) from a moving observer's frame o(t), and the

recording of motion is relative to s(t).
e velocity observed from an arbitrary frame (e.g., point linear velocity, angular velocity, and twist) is:

o(to) d ot olts)  _olt) o(to)

Us(to)—b(te) — gg Ls(t)—b(t) ! where D, )"0 ) = Poito)b(t) ~ Polto)—rs(t)

e Note: above is a general rule of taking derivative of coordinate w.r.t. time (so that body velocity/twist is

non-zero).

© e.g., when we derive the body-frame Euler equation last lecture body inertia 1s defined by body frame

coordinates, more precisely, f((tt{) f dVp(r E)) ())[ t) e ][ bt) sl t)]
b(to)

o Therefore, while [ is an invariant w.r.t. ¢ (since 'rb( t;_m (0 is invariant), its derivative (taken only
t=t,

w.r.t. the subscript) is non-zero.
> This is exactly the case that body-frame coordinate is a constant for body points, but they have

velocity.

2125 < step-2



Agenda

e Kinetic Energy
e Change of Frame for Various Quantities

e Forward and Inverse Dynamics

click to jump to the section.
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Kinetic Energy
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Kinetic Energy for Point Mass

e If a point mass m is moving with velocity v‘;’( £)—sb() (s(t) is an inertia frame and the origin of b(t) is the

point), then the kinetic energy of the point mass is

1
|°

Tst)—b(t) = EmHvz(t)_}b(t) (kinetic energy)
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Observer-Independence of Kinetic Energy

e Note that we omit observer's frame when describing kinetic energy, because it is independent of the
observer's frame.

o) sb(t)|

e We prove by showing that ”szt) Loy = 1150

6/25 < step-6



6/25

e Note that we omit observer's frame when describing kinetic energy, because it is independent of the

Observer-Independence of Kinetic Energy

observer's frame.

e We prove by showing that ||v’

e Proof:
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Observer-Independence of Kinetic Energy

e Note that we omit observer's frame when describing kinetic energy, because it is independent of the
observer's frame.

e We prove by showing that H'v:Et —b() H = ||v ”“E )_}b(t)H
e Proof:
vz%t)%b(t) — ’ngt) o ’U:Et) — [ngt) o Ez%t)]pﬂl — ﬂg—ml [E S(t)]Tﬂg%olp

. | 09 09 Oy ___ =] 02 1 ﬂz
= Toy—01 b(t) es(t)]p = Loy50 (vb(t) - v-ﬂ(t)) o0, s(t)—b(¢)

_ -Rg;—ml _Rg;—mltﬂzﬁﬂl - v{s]?t)—:»b(t)lm‘l _ I{'ﬂ"l_l"‘f""?"',{.;?t)%rb(t)‘3><1
L 0 1 _ 0 | 0
E H"’j([t)—}b(t)u = Hvz?t)—:»b(t)u

e We have also derived
:Et)—:»b(t

02

( y = Rgl_mzvs( ) —sb(t) for v € R® (change of frame for velocities)
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Kinetic Energy for Rigid Body

e Integrate kinetic energy of every point mass over the body

e We choose the body frame J;;) to start the derivation. Using the independence of observer's frame, we

derive the formula to compute the energy in other frames.

e The origin of our body frame is always at the center of mass of the body
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Kinetic Energy for Rigid Body

e Integrate kinetic energy of every point mass over the body

e We choose the body frame J;;) to start the derivation. Using the independence of observer's frame, we

derive the formula to compute the energy in other frames.
e The origin of our body frame is always at the center of mass of the body

e The velocity of a body point 7°(*) is

b(t) _ [&-b(f) |b(®

Ust)—b(2) 5(t)—b(t)

b(t) - b(t) ]
[ws(t)%b(t)] ts(t)—}b(t) rb(t)

0 0
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Kinetic Energy for Rigid Body

Therefore,

_ 1 b(t) > _ 1 b(t) b(t) | 40 2
Ts()-b(t) = / - 5 P)AVIIv ) " = / - 5 P@)AVI[lw ) T +E )

= (some derivations using [w|r = —|r|w)

1 . b(t) l 1 b(t) b, b(t)
™ Hts(t)—}fl:'(t)H2 9 (wS(t)%b(f))TI “s(t)+b(t)
1

b(t) T syyab ¢b(2)
— E(es(t)—ﬂa(t)) M Es(t)—>b(t)

where

-mIdgxg 0
0 I°
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Kinetic Energy for Rigid Body

e Next, we introduce kinetic energy formula in other frames



Kinetic Energy for Rigid Body

e Next, we introduce kinetic energy formula in other frames

e Consider two frames F; and F,. Let T7_,5 be the change of coordinate transformation.

¢ To ensure that energy must be independent of the observer's frame, we define M so that

%(El)Tmlel _ % (&2)T9~n2£2
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Kinetic Energy for Rigid Body

e Next, we introduce kinetic energy formula in other frames

e Consider two frames F; and F,. Let T7_,5 be the change of coordinate transformation.

¢ To ensure that energy must be independent of the observer's frame, we define Mt so that
L ocainTovntst Lot meens
(€)7o = (€)%

e Recall that &' = [Ad;_,2]€?, and we conclude that

M* = [Ad;_o] "I [Ad;_s] (change of frame)
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Change of Observer's Frame
for Rotational Inertia Matrix

e A side-product of introducing 9Jt° is that we can compute the inertia matrix in other frames conveniently

e We derived the change of frame formula for different body frames. What about frame change between
general observer's frames?
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Change of Observer's Frame
for Rotational Inertia Matrix

e A side-product of introducing 9Jt° is that we can compute the inertia matrix in other frames conveniently

e We derived the change of frame formula for different body frames. What about frame change between
general observer's frames?

¢ One can verify that,

the bottom-right 3 x 3 block of 91° is the rotational inertial matrix in F,
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Change of Frame for Various Quantities
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Motivating Example: Grasp Problem

e Consider the right grasp problem

Figure 5.14: Grasp coordinate frames.
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Motivating Example: Grasp Problem

e Consider the right grasp problem

o Assume that we are grasping this box using two

dITS

Figure 5.14: Grasp coordinate frames.
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Motivating Example: Grasp Problem

e Consider the right grasp problem

o Assume that we are grasping this box using two
arms

© We apply torques at each joint through the
installed motors

Figure 5.14: Grasp coordinate frames.
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Motivating Example: Grasp Problem

e Consider the right grasp problem

o Assume that we are grasping this box using two
arms

© We apply torques at each joint through the
installed motors

> These torques will be passed to the tips of the
fingers.

Figure 5.14: Grasp coordinate frames.
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Motivating Example: Grasp Problem

e Consider the right grasp problem

o Assume that we are grasping this box using two

dITS

© We apply torques at each joint through the
installed motors

o These torques will be passed to the tips of the
fingers.

o The contact area will create certain force and

torque at the contact point

m force: pressure and friction
B torque: e.g., anti-twisting friction force Figure 5.14: Grasp coordinate frames.
caused by the area contact
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Contact Coordinate Frame

e We build a contact frame C; at each contact point

e The z-axis of the frame points inward along

surface normal T
¢ When recording force and torque at the contact
point, it is natural to set C; as the observer's frame,
i.e., i3
o _ [£9° : -
F 'i — wd s
70

Figure 5.2: Coordinate frames for contact and object forces.
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Some Kinds of Contact Forces

Contact Type

Frictionless point contact

Point contact with friction

FC

0
0

Iz

oo O

TR
Ty

f-
0

0
0

Soft-finger
fz
Ty

f-
0

0

T2

<

step-14



Adding Forces and Torques

e Suppose we have calculated F'“ at each contact
(will learn later)

=2

e What is the combined force and torque?

g jele;

4h

Figure 5.2: Coordinate frames for contact and object forces.

LSS < step-15



Adding Forces and Torques

e Suppose we have calculated F'“ at each contact
(will learn later)

e What is the combined force and torque? T
e We cannot directly add forces and torques
recorded using different observer frames
=

g jele;

4h

Figure 5.2: Coordinate frames for contact and object forces.
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Adding Forces and Torques

e Suppose we have calculated F'“ at each contact
(will learn later)

e What is the combined force and torque? T
e We cannot directly add forces and torques
recorded using different observer frames
e However, we can change all to the same frame P
(e.g., body frame) and add together! fog

4h

Figure 5.2: Coordinate frames for contact and object forces.
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Change of Observer's Frame for Force and Torque

Consider the question of changing the observer's frame for force and torque

e We would relate

f 1 and f2
ool — pl o fl and T2 — p2 % f2

e Note that

2 1
r" = Ry ;17 + 1y 4

.f2 = R2—>1f1
¢ Plug in the definition, and we derive that
-fz- . - R2—>1 0 - -fl- — (Ad il .fl
2 | | = 1-52) 1
7% |[ts1|Res1 Resn| L7t |1
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Change of Observer's Frame for Force and Torque

e Define F'° = , then formula for change of frame is:

F? = (Ad;_»)' F? (change of frame)

¢ Using definitions and frame change equations, it is easy to verify that the following equation to compute
the power of the system input (change rate of kinetic energy):

dT
(F°)1 ¢ = (Fo)'¢° = s (system input power)
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Solution to Adding Forces and Torques

=2

F° =) [Adcp| F©
1=1

£z
[

Figure 5.2: Coordinate frames for contact and object forces.
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Change of Observer's Frame for
Momentum and Angular Momentum

Consider the question of changing the observer's frame for momentum and angular momentum

e We would relate

O pl — 'm,'vl and p2 — m'v2

5 L = vl x mo! and L? = 7? x mv?

¢ Note that
2 R 1 F
T = 17 + T2
v’ = Ry 10"
p° P
e The same derivation as force and torque pair, and we get 72 — (Ad1—>2)T 71

Read by Yourself
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Change of Observer's Frame for
Momentum and Angular Momentum

O

e Define P° = z” ] , and the formula for change of frame is:
P? = (Ad,_,)" P’ (change of frame)
e Note: similar to linear momentum that p° = 23; for translation-only motion, it is straight-forward to
verify that
, drT o :
P¢ = = $L°E (generalized angular momentum)

dge
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e We have learned basic concepts for body motion dynamics
> Properties of objects: mass, rotational inertia
o Motion state: momentum, angular momentum
o Action: force, torque
> Energy perspective: kinetic energy

e We have also introduced various equations for changing the observer's frame
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Forward and Inverse Dynamics
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Dynamics Example: Grasp

e Consider the right grasp problem

A A
Ci e
7 A
P4 /
S, P

Figure 5.14: Grasp coordinate frames.
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Dynamics Example: Grasp

e Consider the right grasp problem

L A
o Assume that we are grasping this box using two :
arms %7 B o
y \
rd /
S, P

Figure 5.14: Grasp coordinate frames.
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Dynamics Example: Grasp

e Consider the right grasp problem

L A
o Assume that we are grasping this box using two :
W % S
> We apply torques at each joint through the b o resmion e o
installed motors
y \
A /
S, Y &

Figure 5.14: Grasp coordinate frames.
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Dynamics Example: Grasp

e Consider the right grasp problem

L A
o Assume that we are grasping this box using two :
arms %7 -0
> We apply torques at each joint through the b o resmion e o
installed motors
> These torques will be passed to the tips of
the fingers.
y \
P /
S, ! &

Figure 5.14: Grasp coordinate frames.
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Dynamics Example: Grasp

e Consider the right grasp problem

L A
o Assume that we are grasping this box using two :
arms % -
> We apply torques at each joint through the b o resmion e o
installed motors
> These torques will be passed to the tips of
the fingers.
y \
rd /
S, P

Figure 5.14: Grasp coordinate frames.
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Dynamics Example: Grasp

e Consider the right grasp problem

o Assume that we are grasping this box using two
W % S

> We apply torques at each joint through the b o resmion e o
installed motors

o These torques will be passed to the tips of
the fingers.

Q1: How to compute force at the tips from the S, p

torques at joints?
Figure 5.14: Grasp coordinate frames.
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Dynamics Example: Grasp

e Consider the right grasp problem

o Assume that we are grasping this box using two
e % T o0

> We apply torques at each joint through the b o resmion e o
installed motors

o These torques will be passed to the tips of
the fingers.

01: How to compute force at the tips from the S, =
torques at joints?
Figure 5.14: Grasp coordinate frames.

02: To keep the box static, what is the balance
condition?
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Dynamics Example: Grasp

e Parameterization
> @ € R": vector of joint variables

o 17 € R": vector of joint forces/torques
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Dynamics Example: Grasp

e Parameterization
> @ € R": vector of joint variables

o 17 € R": vector of joint forces/torques

e Task

o Forward dynamics: Determine acceleration 0 given the state (9, 9) and the joint forces/torques
0 = f (T; 0, 9)
> Inverse dynamics: Finding torques/forces given state 0, 0 and desired acceleration @

T=g(§;9,é)

24/25 < step-24



Lagrangian vs. Newton-Euler Methods

e There are typically two ways to derive the equation of motion for an open-chain robot: Lagrangian method
and Newton-Euler method

Lagrangian Formulation Newton-Euler Formulation
> Energy-based method o Balance of forces/torques
> Dynamic equations in closed form o Dynamic equations numeric/recursive form
o Often used for study of dynamic properties and o Often used for numerical solution of
analysis of control methods forward/inverse dynamics
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