L7-2: Basic Concepts of Rigid-Body Dynamics

Hao Su

Spring, 2021

Agenda

- Angular Momentum and Rotational Inertia
- Torque

click to jump to the section.

Angular Momentum and Rotational Inertia

Angular Momentum of Point Mass

- ullet Assume a point mass m that has a momentum $oldsymbol{p}^o$
- ullet Assume a vector from the origin of the observer's frame O to the point mass $m{r}^o$
- Angular momentum:

Rotational Inertia Preparation

 $oldsymbol{v}$ can be decomposed into tangential velocity $oldsymbol{v}_t$ and radial velocity $oldsymbol{v}_r$

$$oldsymbol{r} imes oldsymbol{v} = oldsymbol{r} imes (oldsymbol{v}_t + oldsymbol{v}_r) = oldsymbol{r} imes oldsymbol{v}_t = oldsymbol{r} imes (oldsymbol{\omega} imes oldsymbol{r})$$

$$egin{aligned} oldsymbol{L}^o &= oldsymbol{r}^o imes oldsymbol{p}^o = oldsymbol{r}^o imes (moldsymbol{v}^o) = moldsymbol{r}^o imes (oldsymbol{\omega}^o imes oldsymbol{\omega}^o) = -m[oldsymbol{r}^o][oldsymbol{r}^o]oldsymbol{\omega}^o \end{aligned}$$

Angular momentum depends on the choice of the observer's frame!

$$egin{aligned} oldsymbol{L}^o &= oldsymbol{r}^o imes oldsymbol{p}^o = oldsymbol{r}^o imes (moldsymbol{v}^o) = moldsymbol{r}^o imes (oldsymbol{\omega}^o imes oldsymbol{q}^o) = -m[oldsymbol{r}^o][oldsymbol{r}^o][oldsymbol{r}^o]oldsymbol{\omega}^o \end{aligned}$$

Angular momentum depends on the choice of the observer's frame!

 \bullet Recall that a momentum, such as p, is a product of inertia and velocity

$$egin{aligned} oldsymbol{L}^o &= oldsymbol{r}^o imes oldsymbol{p}^o = oldsymbol{r}^o imes (moldsymbol{v}^o) = moldsymbol{r}^o imes (oldsymbol{\omega}^o imes oldsymbol{\omega}^o) = -m[oldsymbol{r}^o][oldsymbol{r}^o][oldsymbol{r}^o]oldsymbol{\omega}^o \end{aligned}$$

Angular momentum depends on the choice of the observer's frame!

- \bullet Recall that a momentum, such as p, is a product of inertia and velocity
- We define the rotational inertia similarly. The rotation inertia for a point mass is

$$oldsymbol{I}^o = -m[oldsymbol{r}^o][oldsymbol{r}^o] = egin{bmatrix} m(r_y^2 + r_z^2) & -mr_xr_y & -mr_xr_z \ -mr_xr_y & m(r_x^2 + r_z^2) & -mr_yr_z \ -mr_xr_z & -mr_yr_z & m(r_x^2 + r_y^2) \end{bmatrix} \in \mathbb{R}^{3 imes 3}$$

$$egin{aligned} oldsymbol{L}^o &= oldsymbol{r}^o imes oldsymbol{p}^o = oldsymbol{r}^o imes (moldsymbol{v}^o) = moldsymbol{r}^o imes (oldsymbol{\omega}^o imes oldsymbol{\omega}^o) = -m[oldsymbol{r}^o][oldsymbol{r}^o][oldsymbol{r}^o]oldsymbol{\omega}^o \end{aligned}$$

Angular momentum depends on the choice of the observer's frame!

- \bullet Recall that a momentum, such as p, is a product of inertia and velocity
- We define the rotational inertia similarly. The rotation inertia for a point mass is

$$oldsymbol{I}^o = -m[oldsymbol{r}^o][oldsymbol{r}^o] = egin{bmatrix} m(r_y^2 + r_z^2) & -mr_xr_y & -mr_xr_z \ -mr_xr_y & m(r_x^2 + r_z^2) & -mr_yr_z \ -mr_xr_z & -mr_yr_z & m(r_x^2 + r_y^2) \end{bmatrix} \in \mathbb{R}^{3 imes 3}$$

Then,

$$oldsymbol{L}^o = oldsymbol{I}^o oldsymbol{\omega}^o$$

Angular Momentum and Inertia of Rigid Body

- Let us view rigid body as a system of particles whose relative positions are fixed (no deformation).
- Define the angular momentum of a body by aggregating from volume elements:

$$oldsymbol{L}^o = \int_{x^o \in B} \mathrm{d} \{oldsymbol{r}^o(x) imes oldsymbol{p}^o(x^o)\} = \int_{x^o \in B} \mathrm{d} \{oldsymbol{r}^o(x) imes m(x^o) oldsymbol{v}^o(x^o)\}$$

• One more step:

$$oldsymbol{L}^o = \int_{x^o \in B} -\mathrm{d}\{m^o(x^o)[oldsymbol{r}^o(x^o)][oldsymbol{r}^o(x^o$$

Angular Momentum and Inertia of Rigid Body

• Particularly, if we choose the origin of the observer's frame O at the center of mass:

$$oldsymbol{L}^b = oldsymbol{I}^b oldsymbol{\omega}^b$$

(body angular momentum)

where

$$oldsymbol{I}^b = \int_{x^b \in B} -\mathrm{d}V\{
ho(x^b)[oldsymbol{r}^b(x^b)][oldsymbol{r}^b(x^b)]\}$$

(body inertia)

and center of mass

$$x_{cm}^o = rac{\int m{r}^o
ho d\mathbf{V}}{\int
ho d\mathbf{V}}$$

(center of mass)

Angular Momentum and Inertia of Rigid Body

• Particularly, if we choose the origin of the observer's frame O at the center of mass:

$$\boldsymbol{L}^b = \boldsymbol{I}^b \boldsymbol{\omega}^b$$
 (body angular momentum)

where

$$oldsymbol{I}^b = \int_{x^b \in B} -\mathrm{d}V\{
ho(x^b)[oldsymbol{r}^b(x^b)][oldsymbol{r}^b(x^b)]\} \qquad \qquad ext{(body inertia)}$$

and center of mass

$$x_{cm}^o = rac{\int m{r}^o
ho d\mathbf{V}}{\int
ho d\mathbf{V}} \hspace{1.5cm} ext{(center of mass)}$$

• Since $\mathcal{F}_{b(t)}$ is tightly binded to the body, \mathbf{I}^b does not change w.r.t. time and is a basic property of the object.

Computation of Rigid Body Inertia

$$egin{aligned} oldsymbol{I}^b &= \int_{x^b \in B} -\mathrm{d} V
ho(oldsymbol{x}^b) [oldsymbol{r}^b(oldsymbol{x}^b)] [oldsymbol{r}^b(oldsymbol{x}^b)] \ &= egin{bmatrix} \int
ho(r_y^2 + r_z^2) doldsymbol{V} & -\int
ho r_x r_z doldsymbol{V} & -\int
ho r_x r_z doldsymbol{V} \ -\int
ho r_x r_y doldsymbol{V} & \int
ho(r_x^2 + r_z^2) doldsymbol{V} & -\int
ho r_y r_z doldsymbol{V} \ -\int
ho r_x r_z doldsymbol{V} & -\int
ho r_y r_z doldsymbol{V} & \int
ho(r_y^2 + r_x^2) doldsymbol{V} \end{bmatrix} \end{aligned}$$

• Given uniform density, the integral can be computed analytically for watertight meshes

Fast Inertia Computation

- ullet Divergence theorem! Let $m{F}:\mathbb{R}^3 o\mathbb{R}^3$, $\int_V
 abla\cdotm{F}dV=\oint_Sm{F}\cdotm{n}dS$
- ullet An example: a term of $m{I}$, which is $ho\int_{m{V}}r_yr_zdm{V}$ Let $m{F}(r_x,r_y,r_z)=egin{bmatrix}r_xr_yr_z&0&0\end{bmatrix}^T$

$$abla \cdot oldsymbol{F} = r_y r_z$$

The integral becomes

$$\oint_S m{F} \cdot m{n} dS$$

Now we only need to do 2D integral over triangles.

Read by yourself

- ullet Observe $m{I}^b = \int_{m{r}^b \in B} -\mathrm{d}m{V}
 ho(m{r}^b)[m{r}^b][m{r}^b]$
- Although the origin is always at the center of mass, if we change the orientation of body frame axes, I^b may change!
- How will it change, then?

- ullet Observe $m{I}^b = \int_{m{r}^b \in B} -\mathrm{d}m{V}
 ho(m{r}^b) [m{r}^b] [m{r}^b]$
- ullet Although the origin is always at the center of mass, if we change the orientation of body frame axes, $m{I}^b$ may change!
- How will it change, then?
- If we rotate the frame by R^T and obtain a new frame b', then

$$oldsymbol{I}^{b'} = \int_{oldsymbol{r}^b \in B} -\mathrm{d}oldsymbol{V}
ho(oldsymbol{r}^b)[Roldsymbol{r}^b][Roldsymbol{r}^b][Roldsymbol{r}^b] = \int_{oldsymbol{r}^b \in B} -\mathrm{d}oldsymbol{V}
ho(oldsymbol{r}^b)R[oldsymbol{r}^b][oldsymbol{r}^b]R^T = Roldsymbol{I}^b R^T$$

where the second equality follows $[Rr]=R[r]R^T$ for $R\in\mathbb{SO}^3$. Again, similarity transformation!

- ullet Observe $m{I}^b = \int_{m{r}^b \in B} -\mathrm{d}m{V}
 ho(m{r}^b) [m{r}^b] [m{r}^b]$
- Although the origin is always at the center of mass, if we change the orientation of body frame axes, I^b
 may change!
- How will it change, then?
- ullet If we rotate the frame by R^T and obtain a new frame b', then

$$oldsymbol{I}^{b'} = \int_{oldsymbol{r}^b \in B} -\mathrm{d}oldsymbol{V}
ho(oldsymbol{r}^b)[Roldsymbol{r}^b][Roldsymbol{r}^b][Roldsymbol{r}^b] = \int_{oldsymbol{r}^b \in B} -\mathrm{d}oldsymbol{V}
ho(oldsymbol{r}^b)R[oldsymbol{r}^b][oldsymbol{r}^b]R^T = Roldsymbol{I}^bR^T$$

where the second equality follows $[Rr]=R[r]R^T$ for $R\in\mathbb{SO}^3$. Again, similarity transformation!

Conclusion: Rigid-transformation does not change the eigen properties of $m{I}^b$

- ullet $oldsymbol{I}^b$ admits eigen-decomposition
 - The eigenvectors are called **principal axes**.
 - \circ The eigenvalues (I_1,I_2,I_3) are called the principal moments of inertia.

rectangular parallelepiped:
volume =
$$abc$$
,
 $\mathcal{I}_{xx} = \mathfrak{m}(w^2 + h^2)/12$,
 $\mathcal{I}_{yy} = \mathfrak{m}(\ell^2 + h^2)/12$,
 $\mathcal{I}_{zz} = \mathfrak{m}(\ell^2 + w^2)/12$

rectangular parallelepiped: circular cylinder: ellipsoid: volume =
$$abc$$
, volume = $\pi r^2 h$, volume = $4\pi abc/3$, $\mathcal{I}_{xx} = \mathfrak{m}(w^2 + h^2)/12$, $\mathcal{I}_{xx} = \mathfrak{m}(3r^2 + h^2)/12$, $\mathcal{I}_{xx} = \mathfrak{m}(b^2 + c^2)/5$, $\mathcal{I}_{yy} = \mathfrak{m}(\ell^2 + h^2)/12$, $\mathcal{I}_{yy} = \mathfrak{m}(3r^2 + h^2)/12$, $\mathcal{I}_{yy} = \mathfrak{m}(a^2 + c^2)/5$, $\mathcal{I}_{zz} = \mathfrak{m}(\ell^2 + w^2)/12$ $\mathcal{I}_{zz} = \mathfrak{m}r^2/2$ $\mathcal{I}_{zz} = \mathfrak{m}(a^2 + b^2)/5$

ellipsoid:
volume =
$$4\pi abc/3$$
,
 $\mathcal{I}_{xx} = \mathfrak{m}(b^2 + c^2)/5$,
 $\mathcal{I}_{yy} = \mathfrak{m}(a^2 + c^2)/5$,
 $\mathcal{I}_{zz} = \mathfrak{m}(a^2 + b^2)/5$

(from: https://www.cnblogs.com/21207-iHome/p/7765508.html)

- ullet $oldsymbol{I}^b$ admits eigen-decomposition
 - The eigenvectors are called **principal axes**.
 - \circ The eigenvalues (I_1,I_2,I_3) are called the principal moments of inertia.
- x_{cm} and principal axes form a **body frame** that is intrinsic to the object

rectangular parallelepiped: volume = abc, $\mathcal{I}_{xx} = \mathfrak{m}(w^2 + h^2)/12, \qquad \mathcal{I}_{xx} = \mathfrak{m}(3r^2 + h^2)/12, \qquad \mathcal{I}_{xx} = \mathfrak{m}(b^2 + c^2)/5,$ $\mathcal{I}_{yy} = \mathfrak{m}(\ell^2 + h^2)/12, \qquad \mathcal{I}_{yy} = \mathfrak{m}(3r^2 + h^2)/12, \qquad \mathcal{I}_{yy} = \mathfrak{m}(a^2 + c^2)/5,$ $\mathcal{I}_{zz} = \mathfrak{m}(\ell^2 + w^2)/12, \qquad \mathcal{I}_{zz} = \mathfrak{m}r^2/2, \qquad \mathcal{I}_{zz} = \mathfrak{m}(a^2 + b^2)/5,$

circular cylinder: volume = $\pi r^2 h$,

ellipsoid: volume = $4\pi abc/3$,

(from: https://www.cnblogs.com/21207-iHome/p/7765508.html)

- I^b admits eigen-decomposition
 - The eigenvectors are called **principal axes**.
 - \circ The eigenvalues (I_1,I_2,I_3) are called the principal moments of inertia.
- x_{cm} and principal axes form a **body frame** that is intrinsic to the object
- ullet x_{cm} , principal axes, m, I_1, I_2, I_3 fully determine the behavior of a rigid body under external forces

rectangular parallelepiped: volume = abc, $\mathcal{I}_{xx} = \mathfrak{m}(w^2 + h^2)/12, \qquad \mathcal{I}_{xx} = \mathfrak{m}(3r^2 + h^2)/12, \qquad \mathcal{I}_{xx} = \mathfrak{m}(b^2 + c^2)/5,$ $\mathcal{I}_{yy} = \mathfrak{m}(\ell^2 + h^2)/12, \qquad \mathcal{I}_{yy} = \mathfrak{m}(3r^2 + h^2)/12, \qquad \mathcal{I}_{yy} = \mathfrak{m}(a^2 + c^2)/5,$ $\mathcal{I}_{zz} = \mathfrak{m}(\ell^2 + w^2)/12 \qquad \qquad \mathcal{I}_{zz} = \mathfrak{m}r^2/2 \qquad \qquad \mathcal{I}_{zz} = \mathfrak{m}(a^2 + b^2)/5$

circular cylinder: volume = $\pi r^2 h$,

ellipsoid: volume = $4\pi abc/3$,

(from: https://www.cnblogs.com/21207-iHome/p/7765508.html)

Quiz

Suppose an object is moving in space (rotating and translating), which of the following quantities may change during the motion. (Assume all quantities are measured w.r.t. a static spatial frame)

- A. principal axes (observed from the spatial frame)
- B. x_{cm} (observed from the spatial frame)
- C. m
- D. I_1, I_2, I_3

- Consider a simple example on the right.
- ullet Recall how we define the angular momentum $oldsymbol{L}^o$ for point mass:

$$\boldsymbol{L}^{o} = \boldsymbol{r}^{o} \times \boldsymbol{p}^{o} = \boldsymbol{r}^{o} \times (m\boldsymbol{v}^{o})$$
 (1)

$$oldsymbol{L}^o = oldsymbol{I}^o oldsymbol{\omega}^o$$

Example: a point mass is fixed at the end of a light stick (2)mounted on the wall. At the moment of analysis, it has velocity \boldsymbol{v} .

- Consider a simple example on the right.
- ullet Recall how we define the angular momentum $oldsymbol{L}^o$ for point mass:

$$\boldsymbol{L}^{o} = \boldsymbol{r}^{o} \times \boldsymbol{p}^{o} = \boldsymbol{r}^{o} \times (m\boldsymbol{v}^{o})$$
 (1)

$$oldsymbol{L}^o = oldsymbol{I}^o oldsymbol{\omega}^o$$

• We use the time derivative of $m{L}^o$ to define **torque**, denoted by $m{ au}^o$ 1. By (1), $au^o=\dot{m L}^o=\dot{m r}^o imes(mm v^o)+m r^o imesm f^o=m r^o imesm f^o$, because

2. By (2),
$$\tau = \frac{\mathrm{d}(\boldsymbol{I}^o \boldsymbol{\omega}^o)}{\mathrm{d}t}$$

15/18

Example: a point mass is fixed at the end of a light stick mounted on the wall. At the moment of analysis, it has velocity \boldsymbol{v} .

(2)

step-15

- Consider a simple example on the right.
- ullet Recall how we define the angular momentum $oldsymbol{L}^o$ for point mass:

$$\boldsymbol{L}^{o} = \boldsymbol{r}^{o} \times \boldsymbol{p}^{o} = \boldsymbol{r}^{o} \times (m\boldsymbol{v}^{o})$$
 (1)

$$\boldsymbol{L}^o = \boldsymbol{I}^o \boldsymbol{\omega}^o \tag{2}$$

• We use the time derivative of $m{L}^o$ to define **torque**, denoted by $m{ au}^o$ 1. By (1), $m{ au}^o = \dot{m{L}}^o = \dot{m{r}}^o imes (mm{v}^o) + m{r}^o imes m{f}^o = m{r}^o imes m{f}^o$, because $\dot{m{r}}^o \parallel m{v}^o$

2. By (2),
$$au = \frac{\mathrm{d}(\boldsymbol{I}^o \boldsymbol{\omega}^o)}{\mathrm{d}t}$$

• Torque describes how fast the angular momentum changes (from 2). Torque also relates the change with the cause: an external power input (from 1).

Example: a point mass is fixed at the end of a light stick mounted on the wall. At the moment of analysis, it has velocity \boldsymbol{v} .

- In the example of point mass, we showed the equality of two torque computations
 - \circ the change rate of $m{L}$
 - the input to the system
- For general rigid-body systems, the equality is also true
- For robotic manipulation, torque is the most common description of system input

https://en.wikipedia.org/wiki/Electric_motor

Euler Equation

$$oldsymbol{ au}^b = rac{\mathrm{d}oldsymbol{L}^b}{\mathrm{d}t} = rac{\mathrm{d}(oldsymbol{I}^boldsymbol{\omega}^b)}{\mathrm{d}t} = rac{\mathrm{d}oldsymbol{I}^b}{\mathrm{d}t}oldsymbol{\omega}^b + oldsymbol{I}^brac{\mathrm{d}oldsymbol{\omega}^b}{\mathrm{d}t} = oldsymbol{\omega}^b imes oldsymbol{I}^boldsymbol{\omega}^b + oldsymbol{I}^boldsymbol{\omega}^b$$

- ullet We used $oldsymbol{I}^b = [oldsymbol{\omega}] oldsymbol{I}^b$ without proof
- ullet An observation (example): Even if there is no torque input, if the object has a non-zero angular velocity $oldsymbol{\omega}^b$, then it may still have an angular acceleration $oldsymbol{\omega}^b$
 - When $\omega^b \not\parallel I^b \omega^b$, i.e., ω^b is not along the eigenvector of I^b , ω^b will **NOT** keep unchanged
 - ω^b will not converge ($\dot{\omega}^b$ will never be zero). Its trajectory will form a periodic curve
 - $\circ ~oldsymbol{L}^b = oldsymbol{I}^b oldsymbol{\omega}^b$ is conserved

Euler Equation

$$oldsymbol{ au}^b = oldsymbol{\omega}^b imes oldsymbol{I}^b oldsymbol{\omega}^b + oldsymbol{I}^b oldsymbol{\dot{\omega}}^b \quad ext{(angular motion)}$$

A numerical experiment in SAPIEN for $oldsymbol{ au}^b=0$

(this is illustrative and there are numerical errors)