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Agenda

e Angular Momentum and Rotational Inertia

e Torque

click to jump to the section.
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Angular Momentum and Rotational Inertia

< ang_mo



Angular Momentum of Point Mass

¢ Assume a point mass m that has a momentum p°
e Assume a vector from the origin of the observer's frame O to the point mass 7°

¢ Angular momentum:

L° =7r° x p°
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Rotational Inertia Preparation

v can be decomposed into tangential velocity v; and radial velocity v,

rxv=rX(v;+v.)=rxv;=7r X (wXxX7r)
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Rotational Inertia of Point Mass

L° =7r° x p° = r° x (mv°) = mr° x (w° X r°)

= —mr° X (r° X w°) = —m|[r°][r’|w°

Angular momentum depends on the choice of the observer's frame!



Rotational Inertia of Point Mass

L° =7r° x p° = r° x (mv°) = mr° x (w° X r°)

= —mr° X (r° X w°) = —m|[r°][r’|w°

Angular momentum depends on the choice of the observer's frame!

e Recall that a momentum, such as p, is a product of inertia and velocity
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Rotational Inertia of Point Mass

L° =7r° x p° = r° x (mv°) = mr° x (w° X r°)

= —mr° X (r° X w°) = —m|[r°][r’|w°

Angular momentum depends on the choice of the observer's frame!
e Recall that a momentum, such as p, is a product of inertia and velocity

e We define the rotational inertia similarly. The rotation inertia for a point mass is

m(r; +1r3)  —mr,r, —MT,T,
I° = —m[r°][r’l = | —mr,r, m(Z+7r2) —mrr, | € R

—Mmr,T, —mryr,  m(rz + ;)
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Rotational Inertia of Point Mass

L° =7r° x p° = r° x (mv°) = mr° x (w° X r°)

= —mr° X (r° X w°) = —m|[r°][r’|w°

Angular momentum depends on the choice of the observer's frame!
e Recall that a momentum, such as p, is a product of inertia and velocity

e We define the rotational inertia similarly. The rotation inertia for a point mass is

('T‘y + 72) — i, Ty —mr,T,
I° = —m[r°][r’l = | —mr,r, m(rZ+7r2) —mrpr, | € R
—mr,r, —mr,T, m(r2 + 'rg,)

e Then,
Lﬂ - Iﬂwﬂ
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Angular Momentum and Inertia of Rigid Body

e Let us view rigid body as a system of particles whose relative positions are fixed (no deformation).

e Define the angular momentum of a body by aggregating from volume elements:
L= [ ar@xpe)= [ e xme)e:)
z°eB z°cB
¢ One more step:

= [ @@l @ = ([ -dme)e @)@} o

°cB

7/18 < step-7



Angular Momentum and Inertia of Rigid Body

e Particularly, if we choose the origin of the observer's frame O at the center of mass:

L’ = I (body angular momentum)
where
I’ = / —dV{p(z®)[r’(z®)][r’(z")]} (body inertia)
zbeB
and center of mass
B [ r°pdV

(center of mass)
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Angular Momentum and Inertia of Rigid Body

e Particularly, if we choose the origin of the observer's frame O at the center of mass:

L’ = I (body angular momentum)
where
I’ = / —dV{p(z®)[r’(z®)][r’(z")]} (body inertia)
r’€B
and center of mass
°pdV
Do = J 7% (center of mass)
[ pdV

e Since .Fb(t) is tightly binded to the body, I° does not change w.r.t. time and is a basic property of the
object.
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Computation of Rigid Body Inertia

I'= [ —ave@)lrE)r(e)

[p(r; +7r3)dV  — [ pryr,dV — [ pryr.dV
= | — [prorydV  [p(r: +75)dV  — [ pryr.dV
— [ pryr.dV — [pryr.dV [ p(r; +rz)dV

¢ Given uniform density, the integral can be computed analytically for watertight meshes
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Fast Inertia Computation

e Divergence theorem! Let F : R® — R?, fV V.- FdV = 3{8 F -ndS
e An example: a term of I, which is —p fV ryT:aV
Let Fre vy Te) = [rargrs 0 0]"

V- F=rr,

fF'ndS
S

Now we only need to do 2D integral over triangles.

The integral becomes

Read by yourself
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Mass Properties

e Observe I’ = [, - —dVp(r°)[r’][r"]

e Although the origin is always at the center of mass, if we change the orientation of body frame axes, I°
may change!

e How will it change, then?
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Mass Properties

e Observe I’ = [, - —dVp(r°)[r’][r"]

e Although the origin is always at the center of mass, if we change the orientation of body frame axes, I°
may change!

e How will it change, then?

e If we rotate the frame by R’ and obtain a new frame &', then

- / —dVp(r’)[Rr°][Rr’] = / —dVp(r°)R[r’][r’|R" = RI’R*
r’eB r°eB

where the second equality follows [Rr] = R[r|RT for R € SO°. Again, similarity transformation!
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Mass Properties

e Observe I’ = [, - —dVp(r°)[r’][r"]

e Although the origin is always at the center of mass, if we change the orientation of body frame axes, I°
may change!

e How will it change, then?

e If we rotate the frame by R’ and obtain a new frame &', then

- / —dVp(r’)[Rr°][Rr’] = / —dVp(r°)R[r’][r’|R" = RI’R*
r’eB r°eB

where the second equality follows [Rr] = R[r]RT for R € SO°. Again, similarity transformation!

Conclusion: Rigid-transformation does not change the eigen properties of I°

11/18 < step-11



12/18

Mass Properties

e I% admits eigen-decomposition

o The eigenvectors are called principal axes.

o The eigenvalues (11, 15, I3) are called the
principal moments of inertia.

h

P " h
P )
X
w
rectangular parallelepiped: circular cylinder:
mlunm = alc, volume = nr?h,
T, = m(w? + h?)/12, T.r = m(3r% + h?)/12,
. *rn(tf”E + h*)/12, T,y = m(3r* + h*)/12,
Z,, = m(f? + w?)/12 ., =mr?/2

(from: https://www.cnblogs.com/21207-iHome/p/7765508.html)

ellipsoid:
volume = 4rm‘;r /3,
T.. = m(b® + c2)/5,
T,y = m(a* + ¢*)/5,
T.. =m(a®+b%)/5

< step-12



12/18

Mass Properties

e I’ admits eigen-decomposition
o The eigenvectors are called principal axes.

o The eigenvalues (11, 15, I3) are called the
principal moments of inertia.

® r., and principal axes form a body frame that is
intrinsic to the object

ot

rd
X

u’

rectangular parallelepiped:

w:rlunm = abe,
T.. = m(w? + h?) /l 2
Lyy = rn(a“2 + h?*)/12,
Z,, = m(f? + w?)/12

h

h

circular cylinder:
volume = 7r?h,

T.r = m(3r% + h?)/12,
T,y = m(3r* + h*)/12,

., =mr?/2

(from: https://www.cnblogs.com/21207-iHome/p/7765508.html)

ellipsoid:
volume = 1ruhr/3
T = m b + ¢?) /5,
T,y = m(a* + ¢*)/5,
T.. =m(a®+b%)/5
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Mass Properties

e I’ admits eigen-decomposition
o The eigenvectors are called principal axes.

o The eigenvalues (11, 15, I3) are called the
principal moments of inertia.

® T., and principal axes form a body frame that is
intrinsic to the object

® .., principal axes, m, I, I, I3 fully
determine the behavior of a rigid body under
external forces

|l

rd
X

u’

rectangular parallelepiped:

mlunm = abe,
T.. = m(w? + h?) /l 2
Lyy = m(f“ + h?*)/12,
Z,, = m(f? + w?)/12

II‘
I’I!' £ 3@ -----~-- .
o

circular cylinder:
volume = nr?h,

T.r = m(3r% + h?)/12,
Loy, = wi(3r° + h*) /12,

., =mr?/2

(from: https://www.cnblogs.com/21207-iHome/p/7765508.html)

A Z

ellipsoid:
volume = 47 uhr/%
T = m h + ¢?) /5,
T,y = m(a* + ¢*)/5,
T.. =m(a®+b%)/5
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Ouiz

e

Suppose an object is moving in space (rotating and translating), which of the following quantities may change
during the motion. (Assume all quantities are measured w.r.t. a static spatial frame)

e A. principal axes (observed from the spatial frame)
e B. z., (observed from the spatial frame)

e C.m

e D. I15]25 I3
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Torque

e Consider a simple example on the right. f /E

¢ Recall how we define the angular momentum L° for point mass:

0
L° = r° x p° = r° X (mv°) (1) E

e We have also derived that

@ «

Example: a point mass is fixed

L? = I%° (2) atthe end of a light stick
mounted on the wall. At the
moment of analysis, it has
velocity v.
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Torque

e Consider a simple example on the right.

¢ Recall how we define the angular momentum L° for point mass:
L° = r° x p° = r° X (mv°) (1)
¢ We have also derived that
L° = I°w° (2)

e We use the time derivative of L° to define torque, denoted by 7°
1.By (1), 7° = L° = r° x (mv°) + r° X f° = r° x f°, because
ro || v°

2.By (2), 7 = Jw)

dt

S’
[

Example: a point mass is fixed
at the end of a light stick
mounted on the wall. At the

@ «

moment of analysis, it has
velocity v.
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Torque

e Consider a simple example on the right.

¢ Recall how we define the angular momentum L° for point mass:
L° = r° x p° = r° X (mv°) (1)
¢ We have also derived that
L° = I°w° (2)

e We use the time derivative of L° to define torque, denoted by 7°
1.By (1), 7° = L° = r° x (mv°) + r° X f° = r° x f°, because

ro || v°
2.By (2), 7 = 4L«

e Torque describes how fast the angular momentum changes (from 2).

Torque also relates the change with the cause: an external power input
(from 1).

S’
[

Example: a point mass is fixed
at the end of a light stick
mounted on the wall. At the

@ «

moment of analysis, it has
velocity v.
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Torque

¢ In the example of point mass, we showed the equality of two torque
computations

> the change rate of L
© the input to the system
e For general rigid-body systems, the equality is also true

¢ For robotic manipulation, torque is the most common description of
system input

+ -

https://en.wikipedia.org/wiki/Electric_motor
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Euler Equation

dL?’ I drI’® dw?
Tb= :d( W): wb—l—Ibw

b b b b b
dt dt dt g ~wxlw+lw

e We used I® = [w]I? without proof
e An observation (example): Even if there is no torque input, if the object has a non-zero angular velocity w?
, then it may still have an angular acceleration wb
> When w” y I WP i.e., w’ is not along the eigenvector of I°, w® will NOT keep unchanged
> w’ will not converge (wb will never be zero). Its trajectory will form a periodic curve

o L° = Ibwb is conserved
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Euler Equation

70 = W’ x I’w’ + I’ (angular motion)

A numerical experiment in SAPIEN for 7% = 0

(this is illustrative and there are numerical errors)

18/18 < step-18



