Outline

e Plan and Control

e Practices to Debug Simulators
o Assets, physics, rendering, controller

Plan and Control

)

LI/ L LA LTI IS

Plan and Control

A popular pipeline in classic robotics is planning and control.

Generate Trajectory
(Motion Planning)

—

LI/ L LA Vi Vi

Motion planning generates a trajectory (position, velocity, and acceleration)
of the robot.

Plan and Control

A popular pipeline in classic robotics is planning and control.

Generate Trajectory Execute Trajectory
(Motion Planning) (Control)
W LA ZPLE L JALI LTI IS

Motion planning generates a trajectory (position, velocity, and acceleration)
of the robot.
Control executes the trajectory.

Motion Planning

Generate Trajectory
(Motion Planning)

—

LTS LA VY

Motion Planning

e Task: move a robot from one pose to another

Ratliff N, Zucker M, Bagnell J A, et al. CHOMP: Gradient optimization techniques for efficient motion planning, ICRA 2009
Schulman, John, et al. Finding Locally Optimal, Collision-Free Trajectories with Sequential Convex Optimization, RSS 2013

Motion Planning

e Task: move a robot from one pose to another

e Assumptions
o We know the start and goal pose
o We can verify if a given pose is valid (usually means collision-free)
o We can verify whether a pose is reachable from another pose
using some simple control strategy

Motion Planning

e Task: move a robot from one pose to another

e Assumptions
o We know the start and goal pose
o We can verify if a given pose is valid (usually means collision-free)
o We can verify whether a pose is reachable from another pose
using some simple control strategy

e Algorithms
o Rapidly-exploring random tree (RRT)
o Probabilistic roadmap method (PRM)

Motion Planning Example: PRM

Motion Planning Example: PRM

e Phase 1: Map construction

o Randomly sample collision-free configurations
o Connect every sampled state to its neighbors
o Connect the start and goal states to the graph

AV W=

741

Motion Planning Example: PRM

e Phase 2: Query
o Run path finding algorithms like Dijkstra

How to Find a Robot Pose
For Grasping?

e Some tasks (such as grasping) require
moving the gripper to a position.

e How do we find the robot pose of a given
gripper pose?

How to Find a Robot Pose
For Grasping?

Some tasks (such as grasping) require
moving the gripper to a position.

How do we find the robot pose of a given
gripper pose?

o Inverse Kinematics (IK)

robot_model = robot.create_pinocchio_model()

joint_positions, success, error = robot_model.compute_inverse_kinematics(
Tink_idx,

target_pose,

active_gmask = joint_mask # joints with mask value 1 are allowed to move
max_iterations = 100

Code in SAPIEN

Time Parameterization

e PRM/RRT gives a path with discrete joint positions qg
e A time parameterization algorithm converts the path ¢q
to a joint trajectory (q4, 4a, Gq) with time.

Control

Execute Trajectory
(Control)

—

Vi IS ITIL S 77

Control

e Robotic control executes a given trajectory (g4, 44, Gq4) by

controlling the joint torques T
o q represents the joint positions of a robot

e The problem is known as Inverse Dynamics

T =1D(q;q, q)

Recall Last Lecture

Lagrangian Equation

e Lagrangian equation in vector form:
= M")d + C*(9,0)0 + ¢°(6)
; C}}(G, 0) := Yo F?jkék is called the Coriolis matrix
m Recall that in the body-frame Newton Euler equation, we also have a Coriolis term that comes
from the derivate of rotational inertia. It was used to compensate for the rotational acceleration
of the body frame
= This CZ.”].(H, 6) also comes from taking the derivative of M w.r.t. §. Because M and £ are
described in the body frame in our derivation, we also need this Coriolis term to compensate for
the movement of the body frame.
> g () is due to gravity in our derivation. If there are other external forces (e.g., friction), it would also
show up here.

Control

Robotic control executes a given trajectory (q4, 44, Ga) by

controlling the joint torques T
o q represents the joint positions of a robot

T =1D(G;q,9) = M(q)4d + C(g,4)q + 9(q)

_—

Inertia matrix Coriolis matrix Gravity & other forces

Control

What we have

o Trajectory (qd, C]d, de)
o Inverse dynamics: 7 = ID(@ q, Q)

Ideally, using = computed from g4 gives a perfect

trajectory.
However, the real world is not perfect. What if there is

some error? .
€=4qd—4dd

PD Control

e The PD control law has the form
T = —Kye — Kpe where K,,K,¢c St e =q — qq

e |Intuitively

o When the position lags behind (¢ < (), increase 7T to catch
up

o When it is moving too slow (¢ < ()), also increase T to catch
up

o Inverse dynamics is not used at all!

PD Control

PD control has no convergence guarantee in general
When it converges, often e = (
How to fix it?

Combine PD control and inverse dynamics. (Augmented
PD control)

T =1D(g;q,q) — Ky,é — Kpe

added.

PID:

Augmented PID:

T

T

PID Control

e Jo mitigate steady-state errors, an integral term is often

t
—K,é — Kye — K; / e(t)dt
0

ID(G;q,4q) — Kyé — Kpe — K;

Kva Kp7 KZ S S+

€ —{q —dd

0

t

e(t)dt

Example: PD Velocity Controller

e \elocity controller

o Constant velocity trajectory; acceleration is O
o Do not care about position error; Kp — 0

T =1D(0;¢q,q) — K,é

for joint in robot.get_active_joints():
stiffness: diagonal of Kp
t damping: diagonal of Kv
joint.set_drive_property(stiffness=0, damping=)

robot.set_drive_velocity_target(joint_velocity_target) # set PD control velocity
passive_force = robot.compute_passive_force(gravity= , coriolis_and_centrifugal=)

robot.set_qf(passive_force) # augment PD control with ID

Code in SAPIEN

Use Control in MDP Modeling

e When an RL work says: we use “velocity control” or
“position control” as action. What does that mean?

Use Control in MDP Modeling

e The action in an MDP can be “target joint velocity” or
“target joint position” for a controller.

Use Control in MDP Modeling

e The action in an MDP can be “target joint velocity” or
“target joint position” for a controller.

e A controller (such as PD) is used to convert this velocity
or position signal to joint torques, which are then used to
drive the robot.

Use Control in MDP Modeling

e The action in an MDP can be “target joint velocity” or
“target joint position” for a controller.

e A controller (such as PD) is used to convert this velocity
or position signal to joint torques, which are then used to
drive the robot.

e Joint velocity/position may be a better choice for MDP
action (than torque) due to learnability and sim-to-real
transferability.

More About Control

e (Control focuses on stability and robustness

e A lot of literature
o Optimal control
Feedforward/feedback control (including PD)
Robust control
Self-organized control
Stochastic control

O O O O

O

e Optimal control has a strong connection with RL

https://en.wikipedia.org/wiki/Stochastic_control

Summary

e C(lassic robotics

o Planning
m RRT, PRM
m Generates kinematic trajectory (Qd, dd, (]d)

o Control
m Inverse dynamics 7 = ID(q;q, q)
m Torque, PD, PID, Augmented PD
m Find appropriate torque 7 to follow trajectory (qd, dd. qd)

Practices to
Debug Simulators

Simulations can Produce
Many Unexpected Behavior

Overview

e \We are going to talk about

o How to identify potential problems when a simulation
environment behaves unexpectedly.

o How to debug and improve an environment.

Code used in this section https://github.com/haosulab/cvpr-tutorial-2022

https://github.com/haosulab/cvpr-tutorial-2022

Outline

Causes of common bugs:
Causes of common bugs:
Causes of common bugs:
Causes of common bugs:

Causes of common bugs:

Environment speed

conventions in robotics
simulation assets
physical solver
renderer

controller

Outline

e (Causes of common bugs: conventions in robotics

Causes of common bugs:
Conventions in Robotics

Quaternion representations
Euler-angle representations
Default coordinate frames

Joint order of different software and real robot

Quaternion
Representations

e Quaternion has 2 conventions: o —
X 0m 0.000

o XYZW (Vector First): - 0225

Rotation Rotation

m ROS, PyBullet, PhysX, scipy, Unity 1000 0.000

0.000 0.997

0.003

o WXYZ (Scalar First): ot

Quaternion (WXYZ) 0.077

m SAPIEN, transforms3d, Eigen, Blender SAPIEN
Blender, MUJOCO, V_Rep! PxQuat(float nx, float ny, float nz, float nw)

PyTorch3d, numpy-quaternion PhysX

Rotation.from_quat()
E [l [h Initialize from quaternions.
O Verytll I Ie you use quatern Ion y C eCI (3D rotations can be represente: d using unit-norm quaternions [1].
. Parameters: quat : array_like, shape (N, 4) or (4,)
t h e CO n Ve nt I O n Each row is a (possibly non-unit norm) quaternion in scalar-last (x, y, z
- format. Each quaternion will be normalized to unit nori

scipy

Euler Angle
Representations

| AXES2TUPLE = {

Euler Angle has even more conventions i

'syxz': 5
Uees ((2; Gy 4y GDlo

6, 6, 0),

o 24 conventions (includes Tait—-Bryan angles)

0
i

Even for an “xyz” convention, there are

two possibilities: 24 Euler Angle
Conventions in
o Intrinsic rotations(rotating): coordinate axes transforms3d
attaChed to a mOVing bOdy pytorch3d. transforms.euler_angles_to_matrix(euler_angles: torch.Tensor, convention: str) =

Convert rotations given as Euler angles in radians to rotation matrices.

o Extrinsic rotations(static): coordinate axes
attached to a StatiC body « convention - Convention string of three uppercase letters from {“X”, “Y”, and “Z"}.

Returns: Rotation matrices as tensor of shape (..., 3, 3).

s or r unspecified
Be cautious

If s or r is not specified, test it before use pytorch3d

https://github.com/matthew-brett/transforms3d/blob/f185e866ecccb66c545559bc9f2e19cb5025e0ab/transforms3d/euler.py#L148
https://pytorch3d.readthedocs.io/en/latest/modules/transforms.html#pytorch3d.transforms.euler_angles_to_matrix

Default
Coordinate Frames

e Objects changes orientation when modeled in Blender,
exported as obj, and imported in SAPIEN.

Default
Coordinate Frames

e Objects changes orientation when modeled in Blender,
exported as obj, and imported in SAPIEN.

e Different software and file formats use different
coordinate frame conventions.

Blender .obj exporter changes the frame by default.
SAPIEN does not make frame assumptions based on
format.

Default
Coordinate Frames

e Objects changes orientation when modeled in Blender,
exported as obj, and imported in SAPIEN.

e Different software and file formats use different
coordinate frame conventions.

EQB L) EQ)) NS B@N\' ;; }@,\u

convention OpenGL model/camera ROS model/camera OpenCV Camera
forward -Z -Z +X +Z
up +Z +Z

These are common choices, not always true and may be customized.

Default
Coordinate Frames

Objects changes orientation when modeled in Blender,
exported as obj, and imported in SAPIEN.

Different software and file formats use different
coordinate frame conventions.

Tip: visualize and inspect loaded models when using
assets from a new source.

Joint Order of Robots

e Even with the same URDF, different software can parse
the order of joints in different ways.

e Common Issue:

Train an RL algorithm to control a robot in a simulator.

a
b. Action space is defined as joint velocity/position/force.

O

Deploy the RL policy on a real robot.

Q

Joint order may not match between simulator and real robot.

Outline

e (Causes of common bugs: simulation assets

Causes of common bugs:
Simulation Assets

Gaps between collision and visual mesh
Collision shapes changed after loading
Issues in objects with small mass/inertia
Self-collision from bad modeling

Issues in empty robot links

Gap Between
Collision and Visual Mesh

e Robots often provide 2 types of meshes
o Visual: for rendering only (fancy-looking)
o Collision: for simulation (low-poly, often convex)
o What you see is not used for collision checking!
o Run empty.py

<link name="panda_link1l">
<visual>

try>
mesh filename="franka_desc eshes/visual/linkl.dae"/>

)ytion/meshes/collision/Llinkl.stl"/>

Collision

Collision Shapes
Change After Loading

e Issue posted to SAPIEN Github /NN
o An oven is loaded in PyBullet ‘mm/

o A cube is shot out with seemingly no collision g

/ \

e (Can reproduce in SAPIEN (a completely
different framework)

o Run convex.py

Collision Shapes
Change After Loading

e Most simulations require convex collision shapes and will take the
convex hull of provided collision shapes.

e Solution
o Use Approximate Convex Decomposition to represent the collision shape.
o V-HACD is the most choice and is built into PyBullet.

o Collision-aware ACD developed at our lab preserves detailed structures better.

“As is” V-HACD

https://github.com/kmammou/v-hacd
https://colin97.github.io/CoACD/

Small Mass/Inertia

e Sometimes, a loaded object does not respond to any
applied force/torque

O

If the mass/inertia is too small, the simulation may not be able to
simulate it due to floating point error, or simply by design.

Run small_mass.py

Quick check: mass and inertia should be greater than 1e-7

Increase the mass and inertia to see if the issue goes away

Self-Collision from
Bad Modeling

e URDF from Github may not be perfect
o |f your algorithm does not work, do not blame it...
o Maybe the robot model has some problems

o Run check_urdf.py
-u=../assets/allegro_hand_description/allegro_han
d.urdf

o The palm and thumb finger link collide (in red) at
initial joint position, leading to unstable motion

o Check the URDF and resolve undesired
self-collisions first

I,

Empty Robot Links

e Empty/dummy link:

o No geometry are attached

o Often used as connector between non-empty

<link name="panda_1ink8" />

||nks <joint name="panda_joint8" type="fixed">
<origin rpy="0 0 0" xyz="0 0 0.107"/>
e Empty link may influence robot dynamics I
o Add additional mass/inertia onto the robot i
m E.g. PyBullet gives a warning and set

Link8 of the panda robot
mass to 1(!(9)! _ is an empty link

It can dominate dynamics when

connected links have small mass, e.g.

robot finger (~0.01 kg)

Outline

e (Causes of common bugs: physical simulator

Causes of common bugs:
Physical Simulator

Simulation reset
Undesired penetration
Unstable grasping

Contact properties

Simulation Reset

e Run reset.py

e Resetting simulation to a previous state
o Positions
o Velocities
o Constraints (e.g. controller parameters, controller targets)
e Simulation is not always deterministic
o Resetting and replaying may not result in the same outcome

o Mainly caused by iterative constraint solvers

Undesired Penetration

e Time step

o Run stack.py

o Taking smaller steps almost always make the
solver more stable

o Smaller steps means slower simulation

e Solver iterations

Max solver iterations 2 5

Grasping Stability:
Friction and Solver Parameters
e Most likely

o The block is too heavy and the gripping force and friction
coefficient are not large enough

o Run friction.py
o Debug method: try to increase the friction, and verify the change.
e Other possible reasons

o Time step too large

o Solver iterations too small

Contact Properties

e \What is a contact
o Objects with distance smaller than a threshold
o Most use cases want contacts with force instead of all contacts

o E.g. this is a contact

Outline

e Causes of common bugs: renderer

Causes of common bugs:

Renderer
Definition of depth map (z depth vs distance)
Renderer depth buffer (z-buffer)
Depth of transparent objects
Point cloud from depth

Matrices in vision and rendering

Depth Map

e Many possible ways to provide the depth map

o Z depth: distance along the camera axis (most common)
m May be positive or negative

o Distance (ray depth): distance along the camera ray

Object Distance

Camera

Z-depth, positive | “Z” depth

Depth Buffer

e Many possible ways to provide the depth map
o Z [linear] depth: distance along the camera axis

o Z-buffer depth: raw depth from renderer depth buffer
m Range [0, 1], not linear
m Convert from z-buffer depth to linear depth

- n : near clip plane
“U= l/lerp(l/n, 1/f’ Zb) f . far clip plane

Note: this is the most common choice. There are other z-buffer conventions. Run
a test when in doubt.

Depth of
Transparent Objects

e Should we include or ignore the transparent object?

o Most environments include the transparent object

RGB Opaque depth Transparent depth

Point Cloud From Depth

e Converting depth maps to point
clouds is not always easy. (See
next slides)

e Tips

o Look for a built-in API to get point
clouds and hope it exists.

o Visualize and inspect the point
clouds with some library, e.g.
m T[rimesh
m Open3D

Matrices In
Vision and Rendering

e Vision community and graphics community use different
matrices to represent the camera

o Graphics: model matrix, view matrix, projection matrix

o Vision: extrinsic matrix, intrinsic matrix

Matrices In
Vision and Rendering

e (Convention for camera coordinate frame

Rendering/OpenGL Vision/OpenCV

?"‘E’c'_.‘]\t 2y

Forward -7/ +7

Upward

Matrices In
Vision and Rendering

e View Matrix vs Extrinsic Matrix

O

O

Model matrix (4x4): rendering camera pose in world frame

View matrix (4x4): inverse of model matrix, transforms points in the world
frame to points in the rendering camera frame

Extrinsic matrix (3x4): view matrix but in the vision convention
& /Model

Extrinsicﬁ KW
A

World Fraﬁ’ World Fram\e)

VieV A : = 2 @

Rendering/OpenGL Vision/OpenCV

Matrices In
Vision and Rendering

e Projection Matrix vs Intrinsic Matrix

Matrices In
Vision and Rendering

e Projection Matrix vs Intrinsic Matrix

Projection Matrix: project points to normalized rojection i 2
device coordinates (NDC). /> e

7

> |
i
|

NDC is often a unit cube, sometimes the depth o
(z-buffer) is in range [0,1] instead of [-1,1]. OpenL

Matrices In
Vision and Rendering

e Projection Matrix vs Intrinsic Matrix

coordinates with linear depth

Intrinsic Matrix: project points to image rojection /e
mamﬁ /\ v,
N

Matrices In
Vision and Rendering

e Projection Matrix vs Intrinsic Matrix

Connect NDC with image coordinates: a linear
“viewport transform” plus a depth conversion.

Projection matrix

Intrinsic matrix

Matrices in

Vision and Rendering

e Projection Matrix vs Intrinsic Matrix

S / =<
2¢cy -l

bt A NDC (OpenGL)
7 1 0 (Ope

—(f+n) —2fn
f—n f—n
—1 0

Ol

OpenGL

view matrix

world frame

viewport Q

transform

(linear)

Matrices In
Vision and Rendering

Different projection matrix conventions
o Avoid projection matrices whenever possible

o Perform extensive testing

2fe 28 _ 2 + 1 il)
W w W y) Flip Y, Flip Z, Rescale XYZ
0 2 2w =
H H #
0 0 —(f+n) —2fn . $
f—n f n
0 0 —1 l L/I 0 width
-, /‘_, S
NDC (OpenGL by Default) viewport 2 a
warning;: left hm(l(d transform 0 ldL’P'[ll
/ (linear)
- \w““‘ projection
LK\ || matrix NDC (Vulkan in SAPIEN)
OpenGL =t
e 2 2941 ——/i
_2fy 2¢ +1 0 \ Rescale XY
H

oooS|
I
[
[~
‘\
[~
33

Too Many Transformations...

)
camekspose
(L2

o)
[=7 N
. local pose Sl)QL\W
% T2 A j —_y j

Y) — \\ﬁ actor pose /) ,

_,/gnctor frame [
world frame)
*.0bj r axis
‘ shape frame

N L7
h 1 A
\t—~ > t } shape~y ‘_‘kw

CM local pose

G,
/\‘i
start here S \4)
3
inertial f e .
nertial frame convention era ROS model/camera OpenCV Camer
forward -Z -Z +X +Z

up +Z +Z

convention rendering/OpenG robotics/ROS/SAPIEN vision/OpenCV

Outline

e (Causes of common bugs: controller

Causes of common bugs:
Controller

Gripper with non-parallel motion: Robotig Gripper
Position controller vs “set position”

Balancing passive force

Unstable motion of End-Effector(EE) controller

Joint limits in controller design

Gripper with
Non-Parallel Motion

e Some grippers, e.g. Robotig, has ... § 4
non-parallel motion generated Wi
from 6 inter-dependent joints

e Direct loading into simulator -> Real Robotiq 2F-85
joints are independent

e |ssue: mechanical constraint is M
not well-modeled in the URDF

Sim Robotiq 2F-85 without
constraint modeling

Gripper with
Non-Parallel Motion
Run robotig.py -c

By adding constraints, the motion
can be modeled M

However, adding loop constraints
also brings instability

Sim Robotiq 2F-85 with
constraint modeling

Be cautious when using such
tricks

Balance Passive Force

e “My robot never reaches target positions. Are my PD
controllers bad?”

e PD controller target is only reached when there are no
other forces.

o Passive forces
m Gravity
m Centrifugal and Coriolis force
e Augmented PD Control: compute and apply additional
joint force/torque to balance passive forces along with PD
controllers.

Position Controller vs
Set Position

e During dynamics simulation, never
set position/pose.

e Position controller

o Compute force/torque
o Respect physics
e Set position

o Teleport to configuration

o Do it no matter what.

“Set Position”

Unstable Motion of
EE Control

“Why my robot arm is sometimes
shaking?”

IK solving is not stable when close to
singularity. Possible solution:

o Increase the control frequency

o Increase damping in the IK solver.

Compare ee_control.py -d=0.01 and \
ee_control.py -d=0.05 damping=0.05

Joint Limits in
Controller Design

“My robot end-effector does not
move as desired.”

Most IK solver/EE controller does
not consider joint limit
o Check whether the robot reaches a

joint limit when observing unsired
controller behavior.

o Try to avoid reaching joint limits in
your algorithm design.

Outline

e Environment speed

Common Issue:
Environment Speed

e Optimizing environment speed is hard

e General guideline

o Debug in a single process/thread
o Build a profiler. Profile the following

Total time for stepping simulation

Total time for rendering functions

Total time for expensive planning/network evaluation
Other time

Profiler Examples

e Habitat’s visual profiler tutorial
O https://www.youtube.com/watch?v=14MjX598ZYs&list=PLGywud -HICORCO0c4uj970ppQrGiB6JNy
o Py-spy for Python code
o Nsight for CUDA
O

Their approaches can be applied to any other python-based
environments

https://www.youtube.com/watch?v=I4MjX598ZYs&list=PLGywud_-HlCORC0c4uj97oppQrGiB6JNy

Rendering Speed

e Rendering is the bottleneck
o Check your loaded meshes
m Are there meshes with millions of triangles?
o Check number of objects
o Switch to a lighter renderer
m If you do not need RGB, switch to a depth-only renderer can
save time and memory

Physical Simulation Speed

e Physical simulation is the bottleneck

o If single step is consistently slow
m Check whether there is undesired collision.
m Inspect number of objects in the scene.
m Are there objects with very complex collision?

o If the time for a single step varies
m It is typically slow when there are a lot of collisions
m Disable unnecessary collision checking may help

Summary

Conventions in robotics
Simulation assets
Physical simulator
Renderer

Controller

Environment speed

