
● Plan and Control

● Practices to Debug Simulators
○ Assets, physics, rendering, controller

Outline

Plan and Control

?

Plan and Control
A popular pipeline in classic robotics is planning and control.

Motion planning generates a trajectory (position, velocity, and acceleration)
of the robot.

Generate Trajectory
(Motion Planning)

Plan and Control
A popular pipeline in classic robotics is planning and control.

Motion planning generates a trajectory (position, velocity, and acceleration)
of the robot.
Control executes the trajectory.

Generate Trajectory
(Motion Planning)

Execute Trajectory
(Control)

Motion Planning

Generate Trajectory
(Motion Planning)

● Task: move a robot from one pose to another

Motion Planning

Ratliff N, Zucker M, Bagnell J A, et al. CHOMP: Gradient optimization techniques for efficient motion planning, ICRA 2009
Schulman, John, et al. Finding Locally Optimal, Collision-Free Trajectories with Sequential Convex Optimization, RSS 2013

● Task: move a robot from one pose to another
● Assumptions

○ We know the start and goal pose
○ We can verify if a given pose is valid (usually means collision-free)
○ We can verify whether a pose is reachable from another pose

using some simple control strategy

Motion Planning

● Task: move a robot from one pose to another
● Assumptions

○ We know the start and goal pose
○ We can verify if a given pose is valid (usually means collision-free)
○ We can verify whether a pose is reachable from another pose

using some simple control strategy

● Algorithms
○ Rapidly-exploring random tree (RRT)
○ Probabilistic roadmap method (PRM)

Motion Planning

Motion Planning Example: PRM

Motion Planning Example: PRM

● Phase 1: Map construction
○ Randomly sample collision-free configurations
○ Connect every sampled state to its neighbors
○ Connect the start and goal states to the graph

Motion Planning Example: PRM

● Phase 2: Query
○ Run path finding algorithms like Dijkstra

How to Find a Robot Pose
For Grasping?

● Some tasks (such as grasping) require
moving the gripper to a position.

● How do we find the robot pose of a given
gripper pose?

?

How to Find a Robot Pose
For Grasping?

● Some tasks (such as grasping) require
moving the gripper to a position.

● How do we find the robot pose of a given
gripper pose?
○ Inverse Kinematics (IK) ?

Code in SAPIEN

Time Parameterization
● PRM/RRT gives a path with discrete joint positions
● A time parameterization algorithm converts the path

to a joint trajectory with time.

Control

Execute Trajectory
(Control)

Control
● Robotic control executes a given trajectory by

controlling the joint torques
○ q represents the joint positions of a robot

● The problem is known as Inverse Dynamics

Recall Last Lecture

Control
● Robotic control executes a given trajectory by

controlling the joint torques
○ q represents the joint positions of a robot

Inertia matrix Coriolis matrix Gravity & other forces

Control
● What we have

○ Trajectory
○ Inverse dynamics:

● Ideally, using computed from gives a perfect
trajectory.

● However, the real world is not perfect. What if there is
some error?

● The PD control law has the form

● Intuitively
○ When the position lags behind (), increase to catch

up
○ When it is moving too slow (), also increase to catch

up
○ Inverse dynamics is not used at all!

PD Control

where

● PD control has no convergence guarantee in general
● When it converges, often
● How to fix it?

● Combine PD control and inverse dynamics. (Augmented
PD control)

PD Control

PID Control
● To mitigate steady-state errors, an integral term is often

added.

PID:

Augmented PID:

Example: PD Velocity Controller

● Velocity controller
○ Constant velocity trajectory; acceleration is 0
○ Do not care about position error;

Code in SAPIEN

Use Control in MDP Modeling

● When an RL work says: we use “velocity control” or
“position control” as action. What does that mean?

Use Control in MDP Modeling

● The action in an MDP can be “target joint velocity” or
“target joint position” for a controller.

Use Control in MDP Modeling

● The action in an MDP can be “target joint velocity” or
“target joint position” for a controller.

● A controller (such as PD) is used to convert this velocity
or position signal to joint torques, which are then used to
drive the robot.

Use Control in MDP Modeling

● The action in an MDP can be “target joint velocity” or
“target joint position” for a controller.

● A controller (such as PD) is used to convert this velocity
or position signal to joint torques, which are then used to
drive the robot.

● Joint velocity/position may be a better choice for MDP
action (than torque) due to learnability and sim-to-real
transferability.

More About Control
● Control focuses on stability and robustness
● A lot of literature

○ Optimal control
○ Feedforward/feedback control (including PD)
○ Robust control
○ Self-organized control
○ Stochastic control
○ …

● Optimal control has a strong connection with RL

https://en.wikipedia.org/wiki/Stochastic_control

Summary
● Classic robotics

○ Planning
■ RRT, PRM
■ Generates kinematic trajectory

○ Control
■ Inverse dynamics
■ Torque, PD, PID, Augmented PD
■ Find appropriate torque to follow trajectory

Practices to
Debug Simulators

Simulations can Produce
Many Unexpected Behavior

Overview
● We are going to talk about

○ How to identify potential problems when a simulation
environment behaves unexpectedly.

○ How to debug and improve an environment.

Code used in this section https://github.com/haosulab/cvpr-tutorial-2022

https://github.com/haosulab/cvpr-tutorial-2022

Outline
● Causes of common bugs: conventions in robotics

● Causes of common bugs: simulation assets

● Causes of common bugs: physical solver

● Causes of common bugs: renderer

● Causes of common bugs: controller

● Environment speed

Outline
● Causes of common bugs: conventions in robotics

● Causes of common bugs: simulation assets

● Causes of common bugs: physical solver

● Causes of common bugs: renderer

● Causes of common bugs: controller

● Environment speed

Causes of common bugs:
Conventions in Robotics

● Quaternion representations

● Euler-angle representations

● Default coordinate frames

● Joint order of different software and real robot

Quaternion
Representations

● Quaternion has 2 conventions:

○ XYZW (Vector First):
■ ROS, PyBullet, PhysX, scipy, Unity

○ WXYZ (Scalar First):
■ SAPIEN, transforms3d, Eigen,

Blender, MuJoCo, V-Rep,
PyTorch3d, numpy-quaternion

○ Everytime you use quaternion, check
the convention.

Blender SAPIEN

PhysX

scipy

Euler Angle
Representations

● Euler Angle has even more conventions
○ 24 conventions (includes Tait–Bryan angles)

● Even for an “xyz” convention, there are
two possibilities:
○ Intrinsic rotations(rotating): coordinate axes

attached to a moving body

○ Extrinsic rotations(static): coordinate axes
attached to a static body

● If s or r is not specified, test it before use

24 Euler Angle
Conventions in
transforms3d

s or r unspecified
Be cautious

 pytorch3d

https://github.com/matthew-brett/transforms3d/blob/f185e866ecccb66c545559bc9f2e19cb5025e0ab/transforms3d/euler.py#L148
https://pytorch3d.readthedocs.io/en/latest/modules/transforms.html#pytorch3d.transforms.euler_angles_to_matrix

Default
Coordinate Frames

● Objects changes orientation when modeled in Blender,
exported as obj, and imported in SAPIEN.

?

Default
Coordinate Frames

● Objects changes orientation when modeled in Blender,
exported as obj, and imported in SAPIEN.

● Different software and file formats use different
coordinate frame conventions.

Blender .obj exporter changes the frame by default.
SAPIEN does not make frame assumptions based on

format.

Default
Coordinate Frames

● Objects changes orientation when modeled in Blender,
exported as obj, and imported in SAPIEN.

● Different software and file formats use different
coordinate frame conventions.

●

These are common choices, not always true and may be customized.

Default
Coordinate Frames

● Objects changes orientation when modeled in Blender,
exported as obj, and imported in SAPIEN.

● Different software and file formats use different
coordinate frame conventions.

● Tip: visualize and inspect loaded models when using
assets from a new source.

Joint Order of Robots
● Even with the same URDF, different software can parse

the order of joints in different ways.

● Common Issue:

a. Train an RL algorithm to control a robot in a simulator.

b. Action space is defined as joint velocity/position/force.

c. Deploy the RL policy on a real robot.

d. Joint order may not match between simulator and real robot.

Outline
● Causes of common bugs: conventions in robotics

● Causes of common bugs: simulation assets

● Causes of common bugs: physical solver

● Causes of common bugs: renderer

● Causes of common bugs: controller

● Environment speed

● Gaps between collision and visual mesh

● Collision shapes changed after loading

● Issues in objects with small mass/inertia

● Self-collision from bad modeling

● Issues in empty robot links

Causes of common bugs:
Simulation Assets

Gap Between
Collision and Visual Mesh

● Robots often provide 2 types of meshes
○ Visual: for rendering only (fancy-looking)

○ Collision: for simulation (low-poly, often convex)

○ What you see is not used for collision checking!

○ Run empty.py

Visual Collision

● Issue posted to SAPIEN Github

○ An oven is loaded in PyBullet

○ A cube is shot out with seemingly no collision

● Can reproduce in SAPIEN (a completely
different framework)

○ Run convex.py

Collision Shapes
Change After Loading

● Most simulations require convex collision shapes and will take the
convex hull of provided collision shapes.

● Solution
○ Use Approximate Convex Decomposition to represent the collision shape.

○ V-HACD is the most choice and is built into PyBullet.

○ Collision-aware ACD developed at our lab preserves detailed structures better.

Collision Shapes
Change After Loading

V-HACD“As is”
https://github.com/kmammou/v-hacd
https://colin97.github.io/CoACD/

Small Mass/Inertia
● Sometimes, a loaded object does not respond to any

applied force/torque

○ If the mass/inertia is too small, the simulation may not be able to
simulate it due to floating point error, or simply by design.

○ Run small_mass.py

○ Quick check: mass and inertia should be greater than 1e-7

○ Increase the mass and inertia to see if the issue goes away

Self-Collision from
Bad Modeling

● URDF from Github may not be perfect

○ If your algorithm does not work, do not blame it…

○ Maybe the robot model has some problems

○ Run check_urdf.py
-u=../assets/allegro_hand_description/allegro_han
d.urdf

○ The palm and thumb finger link collide (in red) at
initial joint position, leading to unstable motion

○ Check the URDF and resolve undesired
self-collisions first

Empty Robot Links
● Empty/dummy link:

○ No geometry are attached

○ Often used as connector between non-empty
links

● Empty link may influence robot dynamics
○ Add additional mass/inertia onto the robot

■ E.g. PyBullet gives a warning and set
mass to 1(kg)!

■ It can dominate dynamics when
connected links have small mass, e.g.
robot finger (~0.01 kg)

Link8 of the panda robot
is an empty link

Outline
● Causes of common bugs: conventions in robotics

● Causes of common bugs: simulation assets

● Causes of common bugs: physical simulator

● Causes of common bugs: renderer

● Causes of common bugs: controller

● Environment speed

Causes of common bugs:
Physical Simulator

● Simulation reset

● Undesired penetration

● Unstable grasping

● Contact properties

Simulation Reset
● Run reset.py

● Resetting simulation to a previous state
○ Positions

○ Velocities

○ Constraints (e.g. controller parameters, controller targets)

● Simulation is not always deterministic
○ Resetting and replaying may not result in the same outcome

○ Mainly caused by iterative constraint solvers

Undesired Penetration
● Time step

○ Run stack.py

○ Taking smaller steps almost always make the
solver more stable

○ Smaller steps means slower simulation

● Solver iterations

Max solver iterations 2 5

● Most likely

○ The block is too heavy and the gripping force and friction
coefficient are not large enough

○ Run friction.py

○ Debug method: try to increase the friction, and verify the change.

● Other possible reasons

○ Time step too large

○ Solver iterations too small

Grasping Stability:
Friction and Solver Parameters

Contact Properties
● What is a contact

○ Objects with distance smaller than a threshold

○ Most use cases want contacts with force instead of all contacts

○ E.g. this is a contact

Outline
● Causes of common bugs: conventions in robotics

● Causes of common bugs: simulation assets

● Causes of common bugs: physical solver

● Causes of common bugs: renderer

● Causes of common bugs: controller

● Environment speed

Causes of common bugs:
Renderer

● Definition of depth map (z depth vs distance)

● Renderer depth buffer (z-buffer)

● Depth of transparent objects

● Point cloud from depth

● Matrices in vision and rendering

Depth Map
● Many possible ways to provide the depth map

○ Z depth: distance along the camera axis (most common)
■ May be positive or negative

○ Distance (ray depth): distance along the camera ray

“Z” depth

Distance

Camera

Object

Z-depth, positive

Depth Buffer
● Many possible ways to provide the depth map

○ Z [linear] depth: distance along the camera axis

○ Z-buffer depth: raw depth from renderer depth buffer
■ Range [0, 1], not linear
■ Convert from z-buffer depth to linear depth

Note: this is the most common choice. There are other z-buffer conventions. Run
a test when in doubt.

Depth of
Transparent Objects

● Should we include or ignore the transparent object?

○ Most environments include the transparent object

RGB Opaque depth Transparent depth

● Converting depth maps to point
clouds is not always easy. (See
next slides)

● Tips
○ Look for a built-in API to get point

clouds and hope it exists.

○ Visualize and inspect the point
clouds with some library, e.g.
■ Trimesh
■ Open3D

Point Cloud From Depth

Matrices in
Vision and Rendering

● Vision community and graphics community use different
matrices to represent the camera

○ Graphics: model matrix, view matrix, projection matrix

○ Vision: extrinsic matrix, intrinsic matrix

Matrices in
Vision and Rendering

Rendering/OpenGL Vision/OpenCV

Forward

● Convention for camera coordinate frame

Upward

Matrices in
Vision and Rendering

● View Matrix vs Extrinsic Matrix
○ Model matrix (4x4): rendering camera pose in world frame

○ View matrix (4x4): inverse of model matrix, transforms points in the world
frame to points in the rendering camera frame

○ Extrinsic matrix (3x4): view matrix but in the vision convention

Rendering/OpenGL Vision/OpenCV

Matrices in
Vision and Rendering

● Projection Matrix vs Intrinsic Matrix

Matrices in
Vision and Rendering

● Projection Matrix vs Intrinsic Matrix

Projection Matrix: project points to normalized
device coordinates (NDC).

NDC is often a unit cube, sometimes the depth
(z-buffer) is in range [0,1] instead of [-1,1].

Matrices in
Vision and Rendering

● Projection Matrix vs Intrinsic Matrix

Intrinsic Matrix: project points to image
coordinates with linear depth

Matrices in
Vision and Rendering

● Projection Matrix vs Intrinsic Matrix

Connect NDC with image coordinates: a linear
“viewport transform” plus a depth conversion.

Matrices in
Vision and Rendering

● Projection Matrix vs Intrinsic Matrix

Projection matrix

Intrinsic matrix

Matrices in
Vision and Rendering

● Different projection matrix conventions
○ Avoid projection matrices whenever possible

○ Perform extensive testing

Too Many Transformations…

Outline
● Causes of common bugs: conventions in robotics

● Causes of common bugs: simulation assets

● Causes of common bugs: physical solver

● Causes of common bugs: renderer

● Causes of common bugs: controller

● Environment speed

Causes of common bugs:
Controller

● Gripper with non-parallel motion: Robotiq Gripper

● Position controller vs “set position”

● Balancing passive force

● Unstable motion of End-Effector(EE) controller

● Joint limits in controller design

Gripper with
Non-Parallel Motion

● Some grippers, e.g. Robotiq, has
non-parallel motion generated
from 6 inter-dependent joints

● Direct loading into simulator ->
joints are independent

● Issue: mechanical constraint is
not well-modeled in the URDF

Real Robotiq 2F-85

Sim Robotiq 2F-85 without
constraint modeling

Gripper with
Non-Parallel Motion

● Run robotiq.py -c

● By adding constraints, the motion
can be modeled

● However, adding loop constraints
also brings instability

● Be cautious when using such
tricks

Sim Robotiq 2F-85 with
constraint modeling

Balance Passive Force
● “My robot never reaches target positions. Are my PD

controllers bad?”

● PD controller target is only reached when there are no
other forces.
○ Passive forces

■ Gravity
■ Centrifugal and Coriolis force

● Augmented PD Control: compute and apply additional
joint force/torque to balance passive forces along with PD
controllers.

Position Controller vs
Set Position

● During dynamics simulation, never
set position/pose.

● Position controller
○ Compute force/torque

○ Respect physics

● Set position
○ Teleport to configuration

○ Do it no matter what.

Position Controller

“Set Position”

Unstable Motion of
EE Control

● “Why my robot arm is sometimes
shaking?”

● IK solving is not stable when close to
singularity. Possible solution:
○ Increase the control frequency

○ Increase damping in the IK solver.

● Compare ee_control.py -d=0.01 and
ee_control.py -d=0.05

damping=0.01

damping=0.05

Joint Limits in
Controller Design

● “My robot end-effector does not
move as desired.”

● Most IK solver/EE controller does
not consider joint limit
○ Check whether the robot reaches a

joint limit when observing unsired
controller behavior.

○ Try to avoid reaching joint limits in
your algorithm design.

Outline
● Causes of common bugs: conventions in robotics

● Causes of common bugs: simulation assets

● Causes of common bugs: physical solver

● Causes of common bugs: renderer

● Causes of common bugs: controller

● Environment speed

Common Issue:
Environment Speed

● Optimizing environment speed is hard
● General guideline

○ Debug in a single process/thread
○ Build a profiler. Profile the following

■ Total time for stepping simulation
■ Total time for rendering functions
■ Total time for expensive planning/network evaluation
■ Other time

Profiler Examples
● Habitat’s visual profiler tutorial

○ https://www.youtube.com/watch?v=I4MjX598ZYs&list=PLGywud_-HlCORC0c4uj97oppQrGiB6JNy

○ Py-spy for Python code
○ Nsight for CUDA
○ Their approaches can be applied to any other python-based

environments

https://www.youtube.com/watch?v=I4MjX598ZYs&list=PLGywud_-HlCORC0c4uj97oppQrGiB6JNy

Rendering Speed
● Rendering is the bottleneck

○ Check your loaded meshes
■ Are there meshes with millions of triangles?

○ Check number of objects
○ Switch to a lighter renderer

■ If you do not need RGB, switch to a depth-only renderer can
save time and memory

Physical Simulation Speed
● Physical simulation is the bottleneck

○ If single step is consistently slow
■ Check whether there is undesired collision.
■ Inspect number of objects in the scene.
■ Are there objects with very complex collision?

○ If the time for a single step varies
■ It is typically slow when there are a lot of collisions
■ Disable unnecessary collision checking may help

Summary
● Conventions in robotics

● Simulation assets

● Physical simulator

● Renderer

● Controller

● Environment speed

