L4: Mesh and Point Cloud

Hao Su
Shape Representation: Origin- and Application-Dependent

- Acquired real-world objects
- Modeling “by hand”
- Procedural modeling
Other than parametric representations, we also study these in this course:

Rasterized form
(regular grids)

Geometric form
(irregular)

- Multi-view
- Mesh
- Depth Map
- Volumetric
- Point Cloud
- Implicit Shape

$$F(x) = 0$$
Agenda

Mesh

Point Cloud
Polygonal Meshes

- Representation
- Storage
- Curvature Computation
Polygonal Meshes

- Piece-wise Linear Surface Representation
Triangle Mesh

http://graphics.stanford.edu/data/3Dscanrep/stanford-bunny-cebal-ssh.jpg
http://www.stat.washington.edu/wxs/images/BUNMID.gif
Triangle Mesh

\[V = \{ v_1, v_2, \ldots, v_n \} \subset \mathbb{R}^3 \]

\[E = \{ e_1, e_2, \ldots, e_k \} \subseteq V \times V \]

\[F = \{ f_1, f_2, \ldots, f_m \} \subseteq V \times V \times V \]
Bad Surfaces

Nonmanifold Edge
1. Each edge is incident to one or two faces.

2. Faces incident to a vertex form a closed or open fan.

This is not a fan:
Manifold Mesh

1. Each edge is incident to one or two faces

2. Faces incident to a vertex form a closed or open fan

Assume meshes are manifold (for now)
“Triangle soup”
Bad Meshes

Nonuniform areas and angles
Why is Meshing an Issue?

How do you interpret one value per vertex?
Assume Storing Scalar Functions on Surface

\[f : \text{Surface} \rightarrow \mathbb{R} \]

Map points to real numbers
Approximation Properties

Ex: Taylor’s Theorem

\[O(h^2) \]

\[f(t) \quad \rightarrow \quad f(t + h) \]

\(f: \) functions defined at vertices (e.g., Gaussian curvature)
Techniques to Improve Mesh Quality

- Cleaning
- Repairing
- Remeshing
- ...
Polygonal Meshes

- Representation
- Storage
- Curvature Computation
Data Structures for Surfaces

• What should be stored?
 - Geometry: 3D coordinates
 - Topology
 - Attributes
 ▶ Normal, color, texture coordinates
 ▶ Per vertex, face, edge
Simple Data Structures: Triangle List

- STL format (used in CAD)
- Storage
 - Face: 3 positions
- No connectivity information

```
<table>
<thead>
<tr>
<th>Triangles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>
```
Simple Data Structures: Indexed Face Set

• Used in formats
 - OBJ, OFF, WRL
• Storage
 - Vertex: position
 - Face: vertex indices
 - Convention is to save vertices in counterclockwise order for normal computation

<table>
<thead>
<tr>
<th>Vertices</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>v0</td>
<td>x0</td>
<td>y0</td>
<td>z0</td>
</tr>
<tr>
<td>v1</td>
<td>x1</td>
<td>x1</td>
<td>z1</td>
</tr>
<tr>
<td>v2</td>
<td>x2</td>
<td>y2</td>
<td>z2</td>
</tr>
<tr>
<td>v3</td>
<td>x3</td>
<td>y3</td>
<td>z3</td>
</tr>
<tr>
<td>v4</td>
<td>x4</td>
<td>y4</td>
<td>z4</td>
</tr>
<tr>
<td>v5</td>
<td>x5</td>
<td>y5</td>
<td>z5</td>
</tr>
<tr>
<td>v6</td>
<td>x6</td>
<td>y6</td>
<td>z6</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Triangles</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>t0</td>
<td>v0</td>
<td>v1</td>
<td>v2</td>
</tr>
<tr>
<td>t1</td>
<td>v0</td>
<td>v1</td>
<td>v3</td>
</tr>
<tr>
<td>t2</td>
<td>v2</td>
<td>v4</td>
<td>v3</td>
</tr>
<tr>
<td>t3</td>
<td>v5</td>
<td>v2</td>
<td>v6</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Right-Hand Rule

http://viz.aset.psu.edu/gho/sem_notes/3d_fundamentals/html/3d_coordinates.html
http://mathinsight.org/stokes_theorem_orientation
Normal Computation
Orientability

orientable

non-orientable

Summary of Polygonal Meshes

• Polygonal meshes are piece-wise linear approximation of smooth surfaces

• Good triangulation is important (manifold, equi-length)

• Vertices, edges, and faces are basic elements

• While real-data 3D are often point clouds, meshes are quite often used to visualize 3D and generate ground truth for machine learning algorithms
Polygonal Meshes

- Representation
- Storage
- Curvature Computation
Challenge on Meshes

Curvature is a second-order derivative, but triangles are flat.
Rusinkiewicz’s Method

Assume a local $f : U \rightarrow \mathbb{R}^3$ at a small triangle
Assume that T_{p_i}’s are roughly parallel
Assume that $Df \begin{bmatrix} u \\ v \end{bmatrix} = u \xi_u + v \xi_v$, i.e., $Df = \begin{bmatrix} \xi_u \\ \xi_v \end{bmatrix}$

(U is also aligned with T_{p_i}’s)
Recall shape operator: $DN = Df \cdot S$.

$\therefore Df = \begin{bmatrix} \vec{\xi}_u \quad \vec{\xi}_v \end{bmatrix}, \therefore S = Df^T DN$

If we have S, we can compute principal curvatures! How to estimate S?
\[Df^T \left(DN \begin{bmatrix} u \\ v \end{bmatrix} \right) \approx Df^T \Delta \vec{n} \implies S \begin{bmatrix} u \\ v \end{bmatrix} \approx Df^T \Delta \vec{n} \]

\[\therefore Df \begin{bmatrix} u \\ v \end{bmatrix} = Y \in T(\mathbb{R}^3) \text{ and } Df = [\vec{\xi}_u, \vec{\xi}_v] \implies \begin{bmatrix} u \\ v \end{bmatrix} = Df^T Y \]

\[\therefore S[Df]^T Y \approx [Df]^T \Delta \vec{n} \]
\[Df^T \left(DN \begin{bmatrix} u \\ v \end{bmatrix} \right) \approx Df^T \Delta \vec{n} \quad \Longrightarrow \quad S \begin{bmatrix} u \\ v \end{bmatrix} \approx Df^T \Delta \vec{n} \]

\[\therefore \quad Df \begin{bmatrix} u \\ v \end{bmatrix} = Y \in T(\mathbb{R}^3) \text{ and } Df = [\vec{\xi}_u, \vec{\xi}_v] \quad \therefore \quad \begin{bmatrix} u \\ v \end{bmatrix} = Df^T Y \]

\[\therefore \quad S[Df]^T Y \approx [Df]^T \Delta \vec{n} \]

\[\begin{cases}
S[Df]^T e_0 = Df^T (\vec{n}_2 - \vec{n}_1), \\
S[Df]^T e_1 = Df^T (\vec{n}_0 - \vec{n}_2), \\
S[Df]^T e_2 = Df^T (\vec{n}_1 - \vec{n}_0),
\end{cases} \]

So we can solve \(S \in \mathbb{R}^{2 \times 2} \) by least square (6 equations and 4 unknowns)
Summary of Mesh Curvature Estimation

• Rusinkiewicz’s method is an effective approach for face curvature estimation
 - Szymon Rusinkiewicz, “Estimating Curvatures and Their Derivatives on Triangle Meshes”, 3DPVT, 2004

• Good robustness to moderate amount of noise and free of degenerate configurations

• Can be used to compute curvatures for point cloud as well
Point Cloud

- Representation
- Sampling Points on Surfaces
- Normal Computation

Ack: Sid Chaudhuri
Acquiring Point Clouds

• From the real world
 • 3D scanning
 • Data is “striped”
 • Need multiple views to compensate occlusion

• Many techniques
 • Laser (LIDAR, e.g., StreetView)
 • Infrared (e.g., Kinect)
 • Stereo (e.g., Bundler)

• Many challenges: resolution, occlusion, noise, registration
Acquisition Challenges

Noise → Poor detail reproduction

Low resolution further obscures detail

Some data was not properly registered with the rest

Occlusion → Interiors not captured
Acquiring Point Clouds

• From existing virtual shapes

• Why would we want to do this?
Light-weight Shape Representation

Point cloud:
• Simple to understand
• Compact to store
• Generally easy to build algorithms

Yet already carries rich information!

\[N = 125 \quad N = 250 \quad N = 500 \quad N = 1000 \]
Point Cloud

• Representation
• Sampling Points on Surfaces
• Normal Computation

Ack: Sid Chaudhuri
Application-based Sampling

• For storage or analysis purposes (e.g., shape retrieval, signature extraction),
 - the objective is often to preserve surface information as much as possible

• For learning data generation purposes (e.g., sim2real),
 - the objective is often to minimize virtual-real domain gap
Application-based Sampling

• For storage or analysis purposes (e.g., shape retrieval, signature extraction),
 - the objective is often to preserve surface information as much as possible

• For learning data generation purposes (e.g., sim2real),
 - the objective is often to minimize virtual-real domain gap
Naive Strategy: Uniform Sampling

- Independent identically distributed (i.i.d.) samples by surface area:

 - Usually the easiest to implement (as in your HW0)
 - Issue: Irregularly spaced sampling
Farthest Point Sampling

• Goal: Sampled points are far away from each other
• NP-hard problem
• What is a greedy approximation method?
Iterative Furthest Point Sampling

• Step 1: Over sample the shape by any fast method (e.g., uniformly sample $N=10,000$ i.i.d. samples)
Iterative Furthest Point Sampling

• Step 2: Iteratively select K points

\[U \] is the initial big set of points
\[S = \{ \} \]

add a random point from \(U \) to \(S \)

for i=1 to K
 find a point \(u \in U \) with the largest distance to \(S \)
 add \(u \) to \(S \)
Issues Relevant to Speed

- Theoretically, naive implementation gives $O(KN)$, but how to improve from $O(KN)$ is an open question.

- Implementation can cause large speed difference
 - As this is a serial algorithm in K, engineers optimize the efficiency in N (computing point-set distance).
 - CPU: Suggest using vectorization (e.g., numpy, scipy.spatial.distance.cdist)
 - GPU: By using shared memory, the complexity can be reduced to $O(K(N/M + \log M))$, where M is the number of threads ($M=512$ in practice for modern GPU).

Read by yourself!
Implementation Tricks

• References:

• By courtesy of Jiayuan Gu, we share a GPU version code with you (through Piazza)

Read by yourself!
def fps_downsample(points, number_of_points_to_sample):
 selected_points = np.zeros((number_of_points_to_sample, 3))
 dist = np.ones(points.shape[0]) * np.inf # distance to the selected set
 for i in range(number_of_points_to_sample):
 # pick the point with max dist
 idx = np.argmax(dist)
 selected_points[i] = points[idx]
 dist_ = ((points - selected_points[i]) ** 2).sum(-1)
 dist = np.minimum(dist, dist_)
 return selected_points
Voxel Downsampling

• Uses a *regular* voxel grid to downsample, taking one point per grid
• Allows higher parallelization level
• Generates regularly spaced sampling (with noticeable artifacts)
Issues Relevant to Speed

• Need to map each point to a bin. Often implemented as adding elements into a hash table

• $\mathcal{O}(N)$ (assuming that the inserting into hash table takes $O(1)$)

• On GPUs, parallelization reduces complexity of
 - Mapping each point to an integer value
 - Assign each value to an index so that the same value shares the same index
 - Aggregate indexes and form the output (called scattering in CUDA)

Read by yourself!
def voxel_downsample(points: np.ndarray, voxel_size: float):
 """Voxel downsample (first).

 Args:
 points: [N, 3]
 voxel_size: scalar

 Returns:
 np.ndarray: [M, 3]
 """
 points_downsampled = dict() # point in each voxel cell
 points_voxel_coords = (points / voxel_size).astype(int) # discretize to voxel coordinate
 for point_idx, voxel_coord in enumerate(points_voxel_coords):
 key = tuple(voxel_coord.tolist()) # voxel coordinate
 if key not in points_downsampled:
 # assign the point to a voxel cell
 points_downsampled[key] = points[point_idx]
 points_downsampled = np.array(list(points_downsampled.values()))
 return points_downsampled
def voxel_downsample_torch(points: torch.Tensor, voxel_size: float):
 """Voxel downsample (average).

Args:
 points: [N, 3]
 voxel_size: scalar

Returns:
 torch.Tensor: [M, 3]
 ""
 points = torch.as_tensor(points, dtype=torch.float32)
 points_voxel_coords = (points / voxel_size).long() # discretize

 # Generate the assignment between points and voxel cells
 unique_voxel_coords, points_voxel_indices, count_voxel_coords = torch.unique(
 points_voxel_coords, return_inverse=True, return_counts=True, dim=0)

 M = unique_voxel_coords.size(0) # the number of voxel cells
 points_downsampled = points.new_zeros([M, 3])
 points_downsampled.scatter_add_(
 dim=0,
 index=points_voxel_indices.unsqueeze(-1).expand(-1, 3),
 src=points)
 points_downsampled = points_downsampled / count_voxel_coords.unsqueeze(-1)
 return points_downsampled
Application-based Sampling

• For storage or analysis purposes (e.g., shape retrieval, signature extraction),
 - the objective is often to preserve surface information as much as possible

• For learning data generation purposes (e.g., sim2real),
 - the objective is often to minimize virtual-real domain gap
 - a good research topic (e.g., GAN? Adversarial training? Differentiable sampling?)
Point Cloud

- Representation
- Sampling Points on Surfaces
- Normal Computation
Estimating Normals

- Plane-fitting: find the plane that best fits the neighborhood of a point of interest
Least-square Formulation

• Assume the plane equation is:
 \[w^T(x - c) = 0 \quad \text{with} \quad \|w\| = 1 \]

• Plane-fitting solves the least square problem:

 minimize \[\sum_i \|w^T(x_i - c)\|_2^2 \]
 subject to \[\|w\|^2 = 1 \]

 where \(\{x_i\} \) is the neighborhood of a point \(x \) that you query the normal
• Doing Lagrangian multiplier and the solution is:

- Let $M = \sum_i (x_i - \bar{x})(x_i - \bar{x})^T$ and $\bar{x} = \frac{1}{n} \sum_i x_i$,

- w: the smallest eigenvector of M

- $c = w^T \bar{x}$

• w also corresponds to the third principal component of M (yet another usage of PCA)

- Where are the first and second principal components?
Summary of Normal Computation

• The normal of a point cloud can be computed through PCA over a local neighborhood

• Remark:
 - The choice of neighborhood size is important
 - When outlier points exist, RANSAC can improve quality