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Agenda
• Background; The definition and applications of 3D object detection.


• The history and recent developments of 3D detection algorithms.


• Future directions of 3D detection research.


• Q&A, discussion.

Prior knowledge:

Although not required, it will be helpful to have some understanding of deep learning methods in 2D 
object detection. You can learn more about it here:

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture11.pdf 

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture11.pdf


The big picture: A.I. applications from the virtual 
world to the physical world

The release of the first iPhone

(Rise of the smart mobile devices)

The AlexNet breakthrough

(Rise of the deep learning for computer vision)

AlphaGo defeated world champion Lee Sedol

(A major milestone of A.I.)

1998 2007 2012 20162004

Facebook was founded.

(Rise of the Internet)

Google was founded.

(Rise of the Internet)

2009

The ImageNet was released.

https://en.wikipedia.org/wiki/Lee_Sedol


The big picture: A.I. applications from the virtual 
world to the physical world

201620062005 2009

Willow Garage was founded.

(ROS, PCL, PR2 robots were invented;

Lab shut down in 2014)

The 2005 DARPA Grand Challenge.

(A milestone in autonomous driving)

Google’s self-driving car

project started.


A series of deep neural networks

for 3D data were invented.

(Rise of 3D deep learning)

2013 2015

The KITTI dataset was released.

The ShapeNet dataset was released.

We are yet to reach the time where A.I. is widely applied to the “robots” in the physical world. 
3D deep learning and 3D object detection are the core technologies towards that future!

The Kinect was released.

2010



What is 3D object detection? 
• Input: sensor data of a 3D scene (RGB/depth/radar images).

• Output: localization, shape and semantics of the 3D objects in the scene (amodal 3D 

bounding boxes).

KITTI:

SUN RGB-D:



What is 3D object detection? 
• Input: sensor data of a 3D scene (RGB/depth/radar images).

• Output: localization, shape and semantics of the 3D objects in the scene (amodal 3D 

bounding boxes).

KITTI:

Figure from VoxelNet [Zhou et al. 2018]



What is 3D object detection? 
• Input: sensor data of a 3D scene. (RGB/depth/radar images).

• E.g. point clouds (N, 3+C) where the channels are x,y,z and features like color, intensity etc.


• Output: localization, shape and semantics of the 3D objects in the scene.

• E.g. upright 3D amodal, oriented bounding boxes (K, 7) with center xyz, length, width, height, 

heading; semantic classes (K,) and box scores (K,).

Figure from VoxelNet [Zhou et al. 2018]

KITTI:



Evaluation Metric: Average Precision (AP) with a 3D Intersection over Union (IoU) 
threshold (assuming 3D bounding box output).


What is 3D object detection? 
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detections.


By scanning through the score thresholds e.g. 
from 0 to 1, we get the PR curve.


Average precision is the area under the curve.

A detailed explanation of the Average Precision metric:  
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173 

https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173


Applications of 3D object detection

source: Waymo

Autonomous Driving
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Applications of 3D object detection
Augmented Reality

source: Microsoft HoloLens

table
top

tv wall

fridge
cupboard



Applications of 3D object detection
Robot Grasping

source: NVIDIA

6d pose est.



The history of 3D object detection
Pre deep learning:

Template-based: 
Generalized Hough Voting (2010) [1]

Local/global descriptor+matching+ICP (2012) [2]
 Figure from [1]

Figure from [2]



The history of 3D object detection

Clustering-based: 
Object Discovery in 3D scenes via Shape Analysis (2013) [3]

Data-driven “objectness” score prediction.


Figure from [3]

Pre deep learning:



The history of 3D object detection

Sliding window based: 
Sliding Shapes for 3D Object Detection in Depth Images (2014) [4] 


Figure from [4]

Pre deep learning:



The deep learning era of 3d object detection

Three factors prepared us for this phase:


• The rise of 3D sensors and access to large-scale 3D datasets 
• Commercial depth cameras, Lidars.

• KITTI, SUN RGB-D, ShapeNet, ScanNet…


• The progresses of 2D object detectors 
• R-CNN (deep nets for classification) -> Fast R-CNN (parallel processing) 

-> Faster R-CNN (region proposal network)…


• The rise of 3D deep learning 
• A series of novel deep neural network architectures for 3D data (MVCNN, 

3DCNNs, PointNet, PointNet++ etc.) has been invented.



The deep learning era of 3d object detection
A first serious attempt of using deep nets for 3d detection:


Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D Images (2016) [5]

- 3D CNNs for Faster-RCNN style region proposal.

Figure from [5]

Con: 3D CNNs are very costly in both memory and time. 



The deep learning era of 3d object detection

Solutions 

Image-driven Leveraging 
Sparsity in 3DDimension reduction

Monocular view detectors

Frustum-based detectors Bird’s eye view detectors Point set deep nets


Sparse 3D conv, GNNs

Frustum PointNets [6] PointPillars [7] VoteNet [8]E.g.:



Image-driven 3D object detection
• Key idea: Leverage mature 2D object detectors to propose objects from 

RGB images.

Monocular or stereo view based

3d bounding box estimation using deep learning and 
geometry (2017) [9]

Pseudo-lidar (2019) [10]

Objects as Points (2019) [11]


Figure from [9]

RGB-D data based

depth to point cloud

2D region (from CNN) to 3D frustum

3D box (from PointNet)

Frustum PointNets [6]



Frustum PointNets for 3D Object 
Detection from RGB-D Data

Charles R. Qi, Wei Liu, Chenxia Wu, 
Hao Su, Leonidas Guibas.


CVPR 2018

23



Images and Point Clouds

High resolution 
Rich textures

RGB images Lidar point clouds

Accurate depth 
Accurate 3D geometry



Images and Point Clouds

High resolution 
Rich textures

RGB images Lidar point clouds

Accurate depth 
Accurate 3D geometry

Can we get the best of both worlds (2D & 3D)?



Frustum PointNets for 3D Object Detection

depth to point cloud

2D region (from CNN) to 3D frustum

3D box (from PointNet)

+ Leveraging mature 2D detectors for region proposal. greatly reducing 3D search space. 

+ 3D deep learning for accurate object localization in frustum point clouds.



Frustum-based 3D Object Detection: Challenges

• Occlusions and clutters are common in frustum point clouds

• Large range of point depths

Background 
Clutter 

Foreground 
occluder



Frustum PointNets

PointNet [Qi et al. CVPR 2017] PointNet++ [Qi et al. NIPS 2017]

Use PointNets for data-driven object detection in frustums.




Frustum PointNets
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Use PointNets for data-driven object detection in frustums.




Frustum Proposal
Propose 3D frustums by 2D region proposals in images and depth pop-up
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Frustum Proposal
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Frustum Proposal



Frustum Proposal
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Frustum Proposal



Frustum Proposal
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Input: RGB-D data


Image region proposal using a 2D 
detector on RGB images (high 
resolution)


Frustum proposal by lifting a 2D 
region into a 3D frustum.


Points in the frustum are extracted 
and are called a frustum point cloud.
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3D Instance Segmentation in Frustums
Localize objects in frustums by point cloud segmentation.
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3D Instance Segmentation in Frustums

Input: frustum point cloud

Point cloud binary segmentation with PointNet: object of interest v.s. others
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3D Instance Segmentation in Frustums
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Point cloud binary segmentation with PointNet: object of interest v.s. others
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3D Instance Segmentation in Frustums
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Amodal 3D Bounding Box Estimation
Estimate 3D bounding boxes from segmented object point clouds.
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KITTI Results: Quantitative
Leading performance on KITTI benchmark

(at the time of publication)
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VoxelNet: [Zhou et al. 2018]
MV3D: [Chen et al. 2017]



KITTI Results: Quantitative
Leading performance on KITTI benchmark

(at the time of publication)
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Especially leading at smaller objects (pedestrians and 
cyclists) – hard to localize with 3D proposals only.

AVOD: [Ku et al. 2018]
VxNet: [Zhou et al. 2017]



Frustum PointNets: Key to our Success

Instance segmentation: depth range maps v.s. point clouds.
• Representation matters — 2D v.s. 3D
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• Representation matters — 2D v.s. 3D



Frustum PointNets: Key to our Success

Instance segmentation: depth range maps v.s. point clouds.
• Representation matters — 2D v.s. 3D



Frustum PointNets: Key to our Success

RGB 2d mask by CNN

depth

range: 9m ~ 55m range: 12m ~ 16m

points from our 3d 
instance segmentation

points from masked
2d depth map

(baseline)

range: 8m ~ 55m

Instance segmentation: depth range maps v.s. point clouds.
• Representation matters — 2D v.s. 3D



Frustum PointNets: Key to our Success

RGB 2d mask by CNN

depth

range: 9m ~ 55m range: 12m ~ 16m

points from our 3d 
instance segmentation

points from masked
2d depth map

(baseline)

range: 8m ~ 55m

Instance segmentation: depth range maps v.s. point clouds.
• Representation matters — 2D v.s. 3D



Frustum PointNets: Key to our Success

Effects of depth representation

dataset: KITTI; metric: 3D bounding box estimation accuracy (%) under IoU 0.7

• Representation matters — 2D v.s. 3D



Frustum PointNets: Key to our Success
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Frustum PointNets: Key to our Success

dataset: KITTI; metric: 3D bounding box estimation accuracy (%) under IoU 0.7
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Frustum PointNets: Key to our Success
Respect and exploit 3D

•Representation matters — using 3D representation and 3D 
deep learning for the 3D problem.
•Canonicalize the problem — exploiting geometric 
transformations in point clouds.



KITTI Results: Qualitative

Remarkable box estimation accuracy 
even with a dozen of points or with 
very partial point clouds.



occluding traffic sign..

Correct segmentation in point clouds 
with heavy occlusion.

KITTI Results: Qualitative



Missing 2D detection results in 
no 3D detection


Multiple ways of proposal

could help (e.g. bird’s eye view, 
multiple 2D proposal networks)

KITTI Results: Qualitative



Very strong occlusion.


Challenging case for instance 
segmentation (multiple close-by 
objects in a single frustum)


KITTI Results: Qualitative



Limitation of the Frustum PointNets

Solution: object proposal from 3D point clouds. 
(VoteNet & ImVoteNet)

•Hard dependence on 2D detections: will miss objects due to strong 
occlusions in 2D views or unfavorable illumination conditions.
•No support of multiple 3D proposals in a frustum.



The deep learning era of 3d object detection

Image-driven Leveraging 
Sparsity in 3DDimension reduction

Monocular view detectors

Frustum-based detectors Bird’s eye view detectors Point set deep nets


Sparse 3D conv, GNNs

Frustum PointNets [6] PointPillars [7] VoteNet [8]E.g.:



Bird’s eye view 3D object detector
• Key idea: Converting the 3D learning problem to a 2D learning problem.


Volumetric and Multi-View CNNs for Object Classification on 3D Data (CVPR’16) by Qi et al. [12]

3D CNN with Anisotropic Probing kernels.

We use an elongated kernel to convolve the 3D cube and aggregate information to a 2D plane. 
Then we use a 2D NIN (NIN-CIFAR10 [23]) to classify the 2D projection of the original 3D shape.

Figure from [12]



Bird’s eye view 3D object detector
• Key idea: Converting the 3D learning problem to a 2D learning problem.


The work that started the KITTI 3D object detection challenge:


Multi-View 3D Object Detection Network for Autonomous Driving (2017) [13]

- Hand designed features are used to convert a 3D scene point cloud to a bird’s eye image.

Figure from [13]



Bird’s eye view 3D object detector
• From hand designed projection to data-driven projection (with PointNet 

like architectures).


Voxelnet: End-to-end learning for point cloud based 3d object detection (2018) [14]

Pointpillars: Fast encoders for object detection from point clouds (2019) [7]

Figure from [14] Figure from [7]



PointPillars: Fast Encoders for Object 
Detection from Point Clouds

Alex H. Lang, Sourabh Vora, Holger 
Caesar, Lubing Zhou, Jiong Yang, 
Oscar Beijbom.


CVPR 2019

66



PointPillars

Handling sparsity in the top-down image (typically, >90% of the pixels are empty):

B: batch size.

P: the maximum number of non-empty pillars per sample (the buffer size).

N: the maximum number of points to keep per pillar (the buffer size).

D: point dimension/number of channels.

1. Pillar encoding:

B x P x N x D -> PointNet -> B x P x C


2. Scatter the dense features to the top-down view:


Indices: P x 3 (for H, W and B)

Dense pillar features: B x P x C

-> B x H x W x C




PointPillars

SSD-style backbone 2D CNN 

SSD: Single-Stage Detector by Wei Liu et al.



PointPillars



PointPillars

The biggest advantages:

- Inference speed.

- Simplicity.


Weaknesses:

- Assumption of a projection plane 

(not generalizable to more complex 
3d scenes).


- Aggressive compression of the 
dimension.



The deep learning era of 3d object detection

Image-driven Leveraging 
Sparsity in 3DDimension reduction

Monocular view detectors

Frustum-based detectors Bird’s eye view detectors Point set deep nets


Sparse 3D conv, GNNs

Frustum PointNets [6] PointPillars [7] VoteNet [8]E.g.:



Point cloud based 3D object detectors
• Key idea: Use sparsity aware backbone architectures (e.g. PointNet++, 

Sparse 3D convnet) and design 3D detection frameworks that leverage 
sparsity.


Deep Hough Voting for 3D Object Detection in Point Clouds (2019) [8] 
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud (2019) [15]

STD: Sparse-to-Dense 3D Object Detector for Point Cloud (2019) [16]

3DSSD: Point-based 3D Single Stage Object Detector (2020) [17]

Pv-rcnn: Point-voxel feature set abstraction for 3d object detection (2020) [18]
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Deep Hough Voting for 3D Object 
Detection in Point Clouds

Charles R. Qi, Or Litany, Kaiming He, 
Leonidas Guibas.


ICCV 2019

Best Paper Nominee

74



Observation: 2D v.s. 3D
Dense 2D pixel array Sparse 3D points 

(only on object surfaces)



Our solution: Voting

Voting from surface points Detected 3D bounding boxes





Deep Hough voting: Detection pipeline 



Deep Hough voting: Detection pipeline 

Explicit supervision for the 
votes (the XYZ translations)



Deep Hough voting: Detection pipeline 



Deep Hough voting: Detection pipeline 



Deep Hough voting: Detection pipeline 



Results: SUN RGB-D (single depth images)



Results: ScanNet (3D reconstructions)



Can images help the VoteNet detection?

Images are in high resolution, have rich texture, and can even provide 
useful geometric cues for object localization & shape/pose estimation.



ImVoteNet: Boosting 3D Object Detection in 
Point Clouds with Image Votes [19]

Charles R. Qi*, Xinlei Chen*, Or Litany, Leonidas Guibas. CVPR 2020.



Results on SUN RGB-D
ImVoteNet



ImVoteNet

Results on SUN RGB-D



The deep learning era of 3d object detection

Image-driven Leveraging 
Sparsity in 3DDimension reduction

Monocular view detectors

Frustum-based detectors Bird’s eye view detectors Point set deep nets


Sparse 3D conv, GNNs

Frustum PointNets [6] PointPillars [7] VoteNet [8]E.g.:



The future of 3D object detection
Input: 

Multi-modal input (multi-camera RGB images, Lidar point clouds/depth 
images, SLAM/SfM point clouds, radar, audio etc.)


Temporal input i.e. sequences.

Source: Waymo (5th generation Waymo driver)



The future of 3D object detection

Machine learning: 

Semi-supervised learning

Self-supervised learning

Weakly-supervised learning

Multi-task learning

Adversarial learning

Domain adaptation

Life-long learning

…


Fig from Anmol Behl 



The future of 3D object detection

Robotics: 

3D instance detection

6D pose estimation

Template based detection

Few-shot detection

…


Fig from Frank Tobe

https://www.therobotreport.com/author/ftobe/


The future of 3D object detection

Continue to push the boundaries 

Occluded cases

Long-tail categories

Extreme conditions (no 3d data, bad 
weather etc.)

…


Source: https://depositphotos.com/vector-images/mountain-climber.html



Summary
• Motivation: A.I. applications in the physical world —> 3D object 

recognition.

• The history and recent progresses of 3D object detection algorithms.

• Deep dive into three specific 3D object detectors:

• Frustum PointNets, PointPillar and VoteNet.


• Future research directions of 3D object detection.

Thank you for listening! Q&A time
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