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Agenda

 Background; The definition and applications of 3D object detection.
* The history and recent developments of 3D detection algorithms.
» Future directions of 3D detection research.

e« Q&A, discussion.

Prior knowledge:

Although not required, it will be helpful to have some understanding of deep learning methods in 2D
object detection. You can learn more about it here:

http://cs231n.stanford.edu/slides/2018/cs231n 2018 lecturell.pdf



http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture11.pdf

The big picture: A.l. applications from the virtual
world to the physical world

1998 2004 2007 2009 2012 2016

The ImageNet was released.

(Iaoog|e was founded. E The AlexNet breakthrough
(Rise of the Internet) E (Rise of the deep learning for computer vision)

The release of the first iPhone

GO '\/gle (Rise of the smart mobile devices)

AlphaGo defeated world champion Lee Sedol
(A major milestone of A.l.)

Facebook was founded.
(Rise of the Internet)

facebook



https://en.wikipedia.org/wiki/Lee_Sedol

The big picture: A.l. applications from the virtual
world to the physical world

2005 2006 20092010 2013 20152016

The Kinect was released. ?

The 2005 DARPA Grand Challenge. !
(A milestone In autonomous driving) The KITTI dataset was released.

W].].].OW WI||OW Garage was founded. The ShapeNet dataset was released.
A&¢ (ROS, PCL, PR2 robots were invented; :
e Labshut down in 2014)

A series of deep neural networks
for 3D data were invented.

Google’s self-driving car (Rise of 3D deep learning)

project started.

We are yet to reach the time where A.lL is widely applied to the “robots” in the physical world.
3D deep learning and 3D object detection are the core technologies towards that future!




What is 3D object detection?

* Input: sensor data of a 3D scene (RGB/depth/radar images).

* Output: localization, shape and semantics of the 3D objects in the scene (amodal 3D
bounding boxes).

KITTI:

SUN RGB-D:




What is 3D object detection?

* Input: sensor data of a 3D scene (RGB/depth/radar images).

* Output: localization, shape and semantics of the 3D objects in the scene (amodal 3D
bounding boxes).

Car

KITTI: Pedestrian
Cyclist ‘




What is 3D object detection?

* Input: sensor data of a 3D scene. (RGB/depth/radar images).
* E.g. point clouds (N, 3+C) where the channels are x,y,z and features like color, intensity etc.
* Output: localization, shape and semantics of the 3D objects in the scene.

* E.g. upright 3D amodal, oriented bounding boxes (K, 7) with center xyz, length, width, height,
heading; semantic classes (K,) and box scores (K,).

Car

KITTI: Pedestrian
Cyclist




What is 3D object detection?

Evaluation Metric: Average Precision (AP) with a 3D Intersection over Union (loU)
threshold (assuming 3D bounding box output).

Car
1 —— Ealsy
te
For each score threshold, we get an “operation 0.8 / Ha )
point” on the PR curve — all predictions with
scores higher than the threshold are considered /
“positive” detections while all others with scores - 06 L |
lower than the threshold is considered “negative” o
detections. IS
0 04 -
By scanning through the score thresholds e.qg.
from O to 1, we get the PR curve.
0.2 _
Average precision is the area under the curve. //
O | | |
0 0.2 0.4 0.6 0.8 1

A detailed explanation of the Average Precision metric: Recall

https.//jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45¢121a31173



https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173

Applications of 3D object detection

Autonomous Driving
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Applications of 3D object detection

Augmented Reality

source: Microsoft HoloLens



Applications of 3D object detection

Robot Grasping

6d pose est.

source: NVIDIA



The history of 3D object detection

Pre deep learning:

Template-based:
Generalized Hough Voting (2010) [1]

Local/global descriptor+matching+ICP (2012) [2] Figure from [1]

Key Point Correspondence Absolute
Extraction Description Matching Grouping Orientation
ICP Hypothesis
pcl: :Uniform N@lpcl: : FPFHEstimation - pcl: :Correspondence N pcl : : SampleConsensus Refinement Verification

\

Sampling pcl: :SHOTEstimation o Grouping ModelRegistration

Local
Pipeline

.
1 § 5y

Segmentation Description Matching Alignment Figure from [2]



The history of 3D object detection

Pre deep learning:

Clustering-based:

Object Discovery in 3D scenes via Shape Analysis (2013) [3]

Data-driven “objectness” score prediction.

Over-segmentation

Bag of segments

Measures

Compactness

L

Symmetry

' Local Convexity |

Global Convexity

4

Smoothness

Ranked object hypotheses

f()

Figure from [3]



The history of 3D object detection

Pre deep learning:

Sliding window based:
Sliding Shapes for 3D Object Detection in Depth Images (2014) [4]

Rendered De

nth 3D Point Cloud Feature
| RGB-D image
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(@) Training each 3D exemplar detector independently. (b) Testing with exemplars.



The deep learning era of 3d object detection

Three factors prepared us for this phase:

 The rise of 3D sensors and access to large-scale 3D datasets

 Commercial depth cameras, Lidars.
o KITTI, SUN RGB-D, ShapeNet, ScanNet...

 The progresses of 2D object detectors
* R-CNN (deep nets for classification) -> Fast R-CNN (parallel processing)
-> Faster R-CNN (region proposal network)...

 The rise of 3D deep learning
* A series of novel deep neural network architectures for 3D data (MVCNN,
3DCNNSs, PointNet, PointNet++ etc.) has been invented.



The deep learning era of 3d object detection

A first serious attempt of using deep nets for 3d detection:

Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D Images (2016) [5]
- 3D CNNs for Faster-RCNN style region proposal.

2D VGG on ImageNet

Figure from [5]

Con: 3D CNNs are very costly in both memory and time.



The deep learning era of 3d object detection

Solutions

_ _ : Leveraging

Monocular view detectors Bird’s eve view detectors Point set deep nets
Frustum-based detectors y Sparse 3D conv, GNNs

Image-driven

E.Q.: Frustum PointNets [6] PointPillars [7] VoteNet [8]



Image-driven 3D object detection

Key idea: Leverage mature 2D object detectors to propose objects from
RGB images.

Monocular or stereo view based RGB-D data based

depth tO pOint Cl()ud

-

~

2D region (from CNN) to 3D frustum
Figure from [9]

3d bounding box estimation using deep learning and .

geometry (2017) [9)] Frustum PointNets [6]
Pseudo-lidar (2019) [10]

Objects as Points (2019) [11]



Frustum PointNets for 3D Object

Detection from RGB-D Data

Charles R. Qi, Wei Liu, Chenxia Wu,
Hao Su, Leonidas Guibas.

CVPR 2018

arXiv:1711.08488v2 [cs.CV] 13 Apr 2018

Frustum PointNets for 3D Object Detection from RGB-D Data

Charles R. Qi'*  Wei Liv? Chenxia Wu? Hao Su’ Leonidas J. Guibas'
‘Stanford University “Nuro, Inc. *UC San Diego

Abstract

In this work, we study 3D object detection from RGB
D dara in both indoor and owidoor scenes. While previows
methods focus on images or 3D vaxels, often obscuring nat
wral 3D panterns and invariances of 3D data, we directly
operale on raw point clowds by popping up RGB-D scans
However, a key challenge of this approach is how to effi
ciently localize objects in point clouds of large-scale scenes
(region proposal). Instead of solely relying on 3D propos
als, our method leverages both marure 20 object detec-
tors and advanced 3D deep leaming for object localization,
achieving efficiency as well as high recall for even small ob-
jects. Benefited from learning directly in raw point clowds,
our method is also able to precisely estimate 3D bound
ing boxes even under strong occlusion or with very sparse
points. Evaluated on KITTI and SUN RGB-D 3D detection
benchmarks, our method outperforms the stare of the art by
remarkable margins while having real-time capabiliry.

1. Introduction

Recently, great progress has been made on 2D image un
derstanding tasks, such as object detection [ | '] and instance
scgmentation [ 14]. However, beyond getting 2D bounding
boxes or pixel masks, D wndersranding is cagerly in de-
mand in many applications such as autonomous driving and
augmented reality (AR). With the populanty of 3D seasors
deployed on mobile devices and automomous vehicles, more
and mare 3D data is captured and processed. In this work,
we stidy one of the most important 3D perception tasks -
3D object detection, which classifies the object category and
estimates orfented 3D bounding boxes of physical objects
from 3D sensor data.

While 3D sensor data is often in the form of point clowds,
how to represent point cloud and what deep net architec-
tures to use for 3D object detection remains an open prob-
km. Most existing works comvert 3D point clouds to im-
ages by projection [ 36, 26] or to volumetric grids by quan-
tization [40, 23, 26] and then apply convolutional networks

*Mayority of the work dose as @ intern at Nwo, Ing

Gapih bn peint chond

0 reghon (e CNXN) 10 10 fravies ;
Figure 1. 3D object detection pipeline. Given RGB-D data, we

first genermte 2D object regioa proposals in the RGB image using a
CNN. Each 2D region is then extruded o a 2D viewing frustum in

D bax (rom Poine )

which we pet a point clowd from depth data. Finally, our frustum
PointNet prodices a (oriented and amodal) 3D bouadiag box foe
the object from the poants in frusbem

This data representation transformation, however, may ob
scure natural 3D patierns and invanances of the data. Re-
cently, a number of papers have proposed to process point
clowds directly without converting them to other formats
For example, [25, 27] proposed new types of deep net archi
tectures, called PoineNers, which have shown superior per-
formance and efficiency in several 3D understanding tasks
such as object classification and semantic segmentation

While PointNets are capable of classifying a whole poimt
clowd or predicting a semantic class for each point in a point
clowd, it is unclear how this architectare can be used for
instance-Jevel 3D object detection. Towards thas goal, we
have 1o address one key challenge: how 1o efficiently pro-
pose possible locations of 3D objects in a 3D space. Imi-
tating the practice in image detection, it is straightforward
10 enumerate candidate 3D boxes by sliding windows [ 5]
or by 3D region proposal networks such as [17], However,
the computational complexity of 3D search typically grows
cubically with respect to resolution and becomes too ex-
pensive for large scenes or real-time applications such as
autonomous driving.

Instead, in this work, we reduce the search space fol-
lowing the dimension reduction principle: we take the ad-
vantage of matare 2D object detectors (Fig, 1), First, we
extract the 3D bounding frustum of an object by extruding
2D bounding baxes from image detectors. Then, within the
3D space tnmmed by cach of the 3D frustums, we consecu-
tively perform 3D object instance segmentation and amaodal

23



Images and Point Clouds

dar point clouds

Li

RGB images

Accurate depth
Accurate 3D geometry

High resolution

Rich textures



Images and Point Clouds

RGB images Lidar point clouds

High resolution Accurate depth
Rich textures Accurate 3D geometry



Frustum PointNets for 3D Object Detection
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+ Leveraging mature 2D detectors for region proposal. greatly reducing 3D search space.
+ 3D deep learning for accurate object localization in frustum point clouds.



Frustum-based 3D Object Detection: Challenges

o

Background
Clutter
/ o

Object of Interest N

/ >

/ \@

@ Foreground
occluder

camera

* Occlusions and clutters are common in frustum point clouds
* Large range of point depths



Frustum PointNets

Use PointNets for data-driven object detection in frustums.

PointNet

car?

Classification Part Segmentation  Semantic Segmentation

PointNet [Qi et al. CVPR 2017]  PointNet++ [Qi et al. NIPS 2017]



Frustum PointNets

Use PointNets for data-driven object detection in frustums.

=
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S point cloud segmented
in frustum - object point. -
o 2 D d (n points) POl ntN et (m points) POl ntN et =
S etection + 2
E deoth o | Instance y / Amodal Box , &
== - < I - .
C epPIh pop-up Segmentation Estimation Network = <
Network 2
Frustum Proposal 3D Instance Segmentation a.:: Amodal 3D Box Estimation m
* pose
* Size

* center



Frustum Proposal

Propose 3D frustums by 2D region proposals in images and depth pop-up
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Frustum Proposal

Input: RGB-D data

Depth
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Frustum Proposal

Input: RGB-D data

———————————————————

Depth

2d region

:91%
CNN g

——————————————————

Image region proposal using a 2D
detector on RGB images (high
resolution)

RGB image
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Frustum Proposal




Frustum Proposal

Input: RGB-D data

— ST T T TS N
B/ \
S : 2d region ‘. . .

. :my : Image region proposal using a 2D
Sy I = i . .
s | 1B detector on RGB images (high
é 1 CNN ﬂ | ¢ resolution)

y Frustum proposal by lifting a 2D

——————————————————

region into a 3D frustum.

Frustum Proposal




Frustum Proposal

Input: RGB-D data

= s TTTTTETETEEEETETEEETTS N
B/ \
S | 2d region \l . .
. :.my : Image region proposal using a 2D
Sy I = i . .
= 2| point cloud detector on RGB images (high
s | & | cé’ in frustum :
6 I CNN } g) : (n pOintS) reSOI Ut|0n)
=~ 2|

Frustum proposal by lifting a 2D
region into a 3D frustum.

Points in the frustum are extracted
and are called a frustum point cloud.



3D Instance Segmentation in Frustums

Localize objects in frustums by point cloud segmentation.
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3D Instance Segmentation in Frustums

point cloud
in frustum
(n points)

Input: frustum point cloud



3D Instance Segmentation in Frustums

’— ____________

-

3D Instance
1 Segmentatio
n PointNet

point cloud
in frustum
(n points)

NXC

I
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l
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Input: frustum point cloud
Point cloud binary segmentation with PointNet: object of interest v.s. others



3D Instance Segmentation in Frustums

’— ____________

-

pointcloud | 3D Instance & ) segment;d
in frustum | X | Segmentatio [—| = object points
(n points) n PointNet s (m points)

I
l
I
l
I
l
I
I
l
I
l
|

Input: frustum point cloud
Point cloud binary segmentation with PointNet: object of interest v.s. others
Points that are classified as object points are extracted for the next step.



3D Instance Segmentation in Frustums

’— ____________

-

I
| |
I |
| |
I |
pointcloud | | | 3D Instance ol ) segment;d
in frustum A Segmentatio [— f’c@ | = object pomts
(n points) . —| n PointNet & : (m points)
: .
one-hot class vector ‘ '

Input: frustum point cloud
Point cloud binary segmentation with PointNet: object of interest v.s. others
Points that are classified as object points are extracted for the next step.



Amodal 3D Bounding Box Estimation

Estimate 3D bounding boxes from segmented object point clouds.
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Amodal 3D Bounding Box Estimation
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Amodal 3D Box Estimation (7=
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Input: object point cloud * center

A regression PointNet estimates amodal 3D bounding box for the object



Frustum PointNets

Depth

point cloud
in frustum
(n points)

2D detection +
depth pop-up

NXC

RGB image

Frustum Proposal

PointNet
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Detection AP for Cars

/2

69

66

63

60

KITTI Results: Quantitative

Leading performance on KITTI benchmark

(at the time of publication)

70.39

Frustum
PointNets
(Ours)

VoxelNet
(Apple)

. 62.35

MV3D
(Baidu)

VoxelNet: [Zhou et al. 2018]
MV3D: [Chen et al. 2017]



KITTI Results: Quantitative

Leading performance on KITTI benchmark

(at the time of publication)

Especially leading at smaller objects (pedestrians and

cyclists) — hard to localize with 3D proposals only.

50 -
45 -
40 -
35 -
30 -
o5 -

20_

3D AP for Pedestrians

44.89

33.69

Ours AVOD VxNet

60 -

55

50 -

45 -

40 -

35 -

30 -

3D AP for Cyclists
56.77

48.36

Ours AVOD VxNet

AVOD: [Ku et al. 2018]
VxNet: [Zhou et al. 2017]



Frustum PointNets: Key to our Success

 Representation matters — 2D v.s. 3D

Instance segmentation: depth range maps v.s. point clouds.



Frustum PointNets: Key to our Success

e Representation matters — 2D v.s. 3D
Instance segmentation: depth range maps v.s. point clouds.




Frustum PointNets: Key to our Success

 Representation matters — 2D v.s. 3D
Instance segmentation: depth range maps v.s. point clouds.
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Frustum PointNets: Key to our Success

 Representation matters — 2D v.s. 3D
Instance segmentation: depth range maps v.s. point clouds.

o T o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

2d mask by CNN points from masked
' 2d depth map
(baseline)

~ -
—————————————————————————————————————————————————————————



Frustum PointNets: Key to our Success

 Representation matters — 2D v.s. 3D
Instance segmentation: depth range maps v.s. point clouds.

o T o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

2d mask by CNN points from masked points from our 3d
' 2d depth map  instance segmentation
(baseline)

range: 9m ~ 55m range: 12m ~ 16m



Frustum PointNets: Key to our Success

 Representation matters — 2D v.s. 3D

Effects of depth representation

network arch. mask depth representation | accuracy
ConvNet - 1mage 18.3
PointNet - point cloud 33.5

PointNet 2D hoint cloud 61.6
PointNet 3D hoint cloud 74.3

PointNet 2D+3D point cloud 70.0




Frustum PointNets: Key to our Success

 Canonicalize the problem with coordinate transformations

| ® ’I o /
III' //// l" ///
/ I /
] .
. ','. / frustgm ' // mask point
° ¢ rotation centroid

%

(a) camera (b) frustum (c) 3D mask (d) 3D object
coordinate coordinate coordinate coordinate



Frustum PointNets: Key to our Success

 Canonicalize the problem with coordinate transformations

I e I o I e
| ® o : | ®
, ) , ) | )
I / ! / I /
'I S " ) I' )/
’ / mask centralize | t-net | accurac
! / / . ! // -
. " / frustum ':'. // mask point ,,' /
4!° ¢/ rotation L4/ centroid  ° - - -
- —> v —> !/ \/
', // ', / ', //
B v y
(a) camera (b) frustum (c) 3D mask (d) 3D object

coordinate coordinate coordinate coordinate



Frustum PointNets: Key to our Success

Respect and exploit 3D

*Representation matters — using 3D representation and 3D
deep learning for the 3D problem.

*Canonicalize the problem — exploiting geometric
transformations in point clouds.
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KITTI Results: Qualitative

orrect segmentation in point clouds
with heavy occlusion.




Ve

Qualitat

KITTI Results

——
.
. .

N

Issing 2D detection results

M

no 3D detection

Multiple ways of proposal
could help (e.qg. bird’

S eye view,

multiple 2D proposal networks)



KITTI Results: Qualitative

1] LI
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Very strong occlusion.

Challenging case for instance
segmentation (multiple close-by
objects in a single frustum




Limitation of the Frustum PointNets

*Hard dependence on 2D detections: will miss objects due to strong
occlusions in 2D views or unfavorable illumination conditions.

*No support of multiple 3D proposals in a frustum.

Solution: object proposal from 3D point clouds.
(VoteNet & ImVoteNet)



The deep learning era of 3d object detection

Leveraging

Image-driven Dimension reduction Sparsity in 3D

Monocular view detectors Bird’s eve view detectors Point set deep nets
Frustum-based detectors y Sparse 3D conv, GNNs

E.g.: Frustum PointNets [6] PointPillars [7] VoteNet [8]



Bird’s eye view 3D object detector

Volumetric and Multi-View CNNs for Object Classification on 3D Data (CVPR

Anisotropic Probing

y 30 30

Image-based CNN

- - ,:—).

" Ja = 1|_5
5
30 3 3

30 5 5

(Network In Network)

3D CNN with Anisotropic Probing kernels.
We use an elongated kernel to convolve the 3D cube and aggregate information to a 2D plane.

Then we use a 2D NIN (NIN-CIFAR

O 00

40

Key idea: Converting the 3D learning problem to a 2D learning problem.

’16) by Qi et al. [12]

Softmax
LOSS

10 [23]) to classify the 2D projection of the original 3D shape.



Bird’s eye view 3D object detector

Key idea: Converting the 3D learning problem to a 2D learning problem.

The work that started the KITTI 3D object detection challenge:

Multi-View 3D Object Detection Network for Autonomous Driving (2017) [13]
- Hand designed features are used to convert a 3D scene point cloud to a bird’s eye image.

3D Proposal Network
4x deconv ROI
L B pooling
& i 2x deconv
. . — Objectness
LIDAR Bird view conv layers Classifier L
(BV) Bird view
Proposals
3D Box
Regressor |

Figure from [13]



Bird’s eye view 3D object detector

 From hand designed projection to data-driven projection (with PointNet
like architectures).

Voxelnet: End-to-end learning for point cloud based 3d object detection (2018) [14]
Pointpillars: Fast encoders for object detection from point clouds (2019) [/]

Point cloud Predictions
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y Vs 3 = I Feature Net (2D CNN) Head (SSD)
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Poin-wise | O adb-ind b’ Point Stacked Learned Pseudo 1  —<o H» F Deconv |
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Input | = S cloud Pillars Features Image ! ! C | 2c N |
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Figure from [14] Figure from [7]



PointPillars: Fast Encoders for Object

Detection from Point Clouds
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Abstract

Object detection in point clouds is an important aspect
of many roborics applicarions such as auronomous driving.
In this paper we consider the problem of encoding a point
cloud into a formar appropriare for a downsiream detection
pipeline. Recent literature suggests two types of encoders;
fived encoders tend to be fast but sacrifice accuracy, while
encoders thar are learned from data are more accurate, but
slower. In this work we propose PointPillars, a novel en-
coder which wiilizes PointNets to learn a representarion of
point clowds organized in vertical columns (pillars). While
the encoded featwres can be used with any standard 2D con
volutional detection architecture, we further propose a lean
downsrream network, Extensive experimentarion shows that
PointPillars owiperforms previous encoders with respect to
both speed and accuracy by a large margin. Despite only
wsing lidar, our full detection pipeline significantly outper-
forms the state of the art, even among fusion methods, with
respect 1o both the 3D and bird's eye view KITTI bench-
marks. This detection performance is achieved while run-
ning ar 62 Hz: a 2 - 4 fold runrime improvement. A faster
version of our method masches the state of the art ar 105 Hz
These benchmarks suggest that PointPillars is an appropri-
ate encoding for object detection in point clowds.

1. Introduction

Deploying autonomous velacles (AVs) in urban eaviron-
ments poses a daflicult technological challenge. Among
other tasks, AVs need to detect and track moving obpects
such as vehicles, pedestrians, and cyclists in realtime, To
achieve this, automomous vehicles rely on several sensors
out of which the lidar is arguably the most impostant, A
lidar uses a laser scanner o measure the distance 1o the
enviroament, thus generating a sparse point cloud repre-
sentation. Traditnonally, a lidar robotics pipeline imerprets
such point clouds as object detections through a bottom-
up pipeline involving background subtraction, followed by
spatiotemporal clustering and classification [1 2, 9]

Ie

j.yang, oscar}@nutonomy.com
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Figure 1. Bard's eye view performance vs speed for our proposed
PoantPillars, method on the KITTI [5] test set.  Ladar-only
methods deawn a8 Bloe circles; bdar & visson methods drawn as
red squares, Also dewwn are op methods from the KITTI leader-
board MV3D 2], Rl AVOD 1], [C} ContFase [15),
VoxeINet [11], [E} Frestum PointNet [21], SECOND [24],
@ PIXOR++ [ 7). PoimPillars cusperforms all other lidar-only
methods in terms of both speed and accuracy by a large margin,
It also outperforms all fusion based method except om pedestrians.
Similar performance is achieved on the 3D metric (Table 2)

Following the tremendous advances in deep leamning
methods for computer vision, a large body of literature has
investigated to what extent this technology could be applied
towards object detection from lidar poant clouds |

v 2,21, 15, J. While there are many samilanties
between the modalities, there are two key differences: 1)
the point cloud is a sparse representation, while an image is
dense and 2) the point cloud is 3D, while the image is 2D,
As a result object detection from point clouds does not triv-
ially lend itself to standard image comvolutional pipelines.

Some carly works focus on either using 3D convolu-
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Point cloud

PointPillars

i 4 N 1. Pillar encoding:
R Pillar | BXxP XxNxD ->PointNet ->BxP xC
S LR Feature Net
e - \ J 2. Scatter the dense features to the top-down view:
_________________ S P
Point Stacked Learned Pseudo : _
cloud Pillars Features image E Indices: _P X3 (for H, W and B)
B N N Dense pillar features: B x P x C
ﬂ A — %J : ->BXxHxWxC
W |
Pillar Index ;I
~ | = R

MR R R R R R R R R R R R R SRR R R R R R R R R R R R R R R R R R R R R R R R R R R R R R e e e

Handling sparsity in the top-down image (typically, >90% of the pixels are empty):
B: batch size.

P: the maximum number of non-empty pillars per sample (the buffer size).
N: the maximum number of points to keep per pillar (the buffer size).
D: point dimension/number of channels.



PointPillars

Point cloud

a ) 4 N
_ Pillar R Backbone
Feature Net (2D CNN)
1 Point Stacked Learned Pseudo \‘. : Conv__| Decony
| cloud Pillars Features image ! 2 2C N e
| .- : : wi2 | Conv ) N
! - [ Deconv Concat “—+
: N 2C b B
: ! : Wi4 | Conv 2C wWiz" o HI2
I ™7
| L H/8 Deconv | e
7 A 4C W/8 H/2
\\ 2C VV"Z

SSD-style backbone 2D CNN

SSD: Single-Stage Detector by Wei Liu et al.
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PointPillars

Point cloud Predictions
: 4 ) 4 N 4 N\
_ Pillar .| Backbone _ Detection

Feature Net (2D CNN) Head (SSD)
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PointPillars
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The biggest advantages:
- Inference speed.

Performance (mAP)
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- Simplicity. 50
Weaknesses: >
- Assumption of a projection plane
(not generalizable to more complex .
3d scenes).
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The deep learning era of 3d object detection

Leveraging

Image-driven Dimension reduction Sparsity in 3D

Monocular view detectors Bird’s eve view detectors Point set deep nets
Frustum-based detectors y Sparse 3D conv, GNNs

E.g.: Frustum PointNets [6] PointPillars [7] VoteNet [8]



Point cloud based 3D object detectors

Key idea: Use sparsity aware backbone architectures (e.g. PointNet++,
Sparse 3D convnet) and design 3D detection frameworks that leverage

sparsity.

Deep Hough Voting for 3D Object Detection in Point Clouds (2019) [8]
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud (2019) [15]
STD: Sparse-to-Dense 3D Object Detector for Point Cloud (2019) [16]

3DSSD: Point-based 3D Single Stage Object Detector (2020) [17]
Pv-rcnn: Point-voxel feature set abstraction for 3d object detection (2020) [18]

PointNet++

Sub manifold sparse 3d conv

set abstraction set abstraction
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Observation: 2D v.s. 3D

Dense 2D pixel array
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Our solution: Voting

Voting from surface points Detected 3D bounding boxes
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Deep Hough voting: Detection pipeline

Point cloud feature
learning backbone
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Deep Hough voting: Detection pipeline
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Deep Hough voting: Detection pipeline
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Deep Hough voting: Detection pipeline
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Deep Hough voting: Detection pipeline

VoteNet

Voting in Point Clouds Object Proposal and Classification from Votes
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ReSUHZS: SU N RG B'D (single depth images)

Image of the scene VoteNet prediction Ground truth




ReSLlltS: ScanNet (3D reconstructions)

VoteNet prediction Ground truth




an images help the VoteNet detection?
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Images are in high resolution, have rich texture, and can even provide
useful geometric cues for object localization & shape/pose estimation.



ImVoteNet: Boosting 3D Object Detection in
Point Clouds with Image Votes [19]

Charles R. Qi*, Xinlei Chen*, Or Litany, Leonidas Guibas. CVPR 2020.




Results on SUN RGB-D

Ours 2D detection
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Results on SUN RGB-D

Ours 2D detection
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The deep learning era of 3d object detection

Leveraging

Image-driven Dimension reduction Sparsity in 3D

Monocular view detectors Bird’s eve view detectors Point set deep nets
Frustum-based detectors y Sparse 3D conv, GNNs

E.g.: Frustum PointNets [6] PointPillars [7] VoteNet [8]



The future of 3D object detection

Input:

Multi-modal input (multi-camera RGB images, Lidar point clouds/depth
images, SLAM/SfM point clouds, radar, audio etc.)

Temporal input I.e. sequences.

Source: Waymo (5th generation Waymo driver)



The future of 3D object detection

Machine learning:

Semi-supervised learning
Self-supervised learning
Weakly-supervised learning
Multi-task learning
Adversarial learning
Domain adaptation
Life-long learning

MAEHINE LEARNING

Fig from Anmol Behl




The future of 3D object detection

Robotics:

3D Instance detection

6D pose estimation
Template based detection
Few-shot detection

Fig from Frank Tobe


https://www.therobotreport.com/author/ftobe/

The future of 3D object detection

Continue to push the boundaries

Occluded cases
Long-tall categories
Extreme conditions (no 3d data, bad

weather etc.) / I

Source: https://depositphotos.com/vector-images/mountain-climber.html



Summary

Motivation: A.l. applications in the physical world —> 3D object
recognition.

The history and recent progresses of 3D object detection algorithms.
Deep dive into three specific 3D object detectors:

e Frustum PointNets, PointPillar and VoteNet.

Future research directions of 3D object detection.

Thank you for listening! Q&A time
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