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Image to Surfaces:


Brief Introduction to the Progress of Mesh Editing



Loss II: Uniform Vertices Distribution 
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Lunif = ∑
p

∑
k∈N(p)

∥p − k∥2
2

• Penalizes the flying vertices and overlong edges to 
guarantee the high quality of recovered 3D geometry


• Encourage equal edge length between vertices
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Effect of minimizing  when fixing topology and 
setting boundary points to the new positions

l

Lunif = ∑
p

∑
q∈N(p)

∥p − q∥2
2



How to Implement?

• Laplacian matrix:

- : adjacency matrix ( )

-  (diagonal matrix, )

-

• Let  (an  matrix) whose 
each column is a point coordinate, and denote the 
block matrix of , then:


-

A n × n
D = diag(A ⋅ 1) n × n
L = D − A
X = [p1, p2, …, pn]T n × 3

X = [X1, X2, X3]

∑
p

∑
q∈N(p)

∥p − q∥2 = tr(XTLX) =
3

∑
i=1

XT
i LXi
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How to Implement?
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minimize{Xi}

3

∑
i=1

XT
i LXi+other losses (e.g, CD or EMD)

subject to AiXi = bi ∀i (boundary conditions)



Challenges of Mesh Editing (I)
• In deformation based method, how do we 

parameterize the movement of vertices of a template 
mesh?
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Deep Neural 

Network

Input image

Mesh template

Δp1
Δp2
⋯
Δpn



Challenges of Mesh Editing (I)
• While one can control at vertices/edges level, we may 

expect to find low-dimensional control handles
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Deformation Field

9
Defer to later lecture

• The movement of the control points warps the space, 
hence warps any matter in the space



Challenges of Mesh Editing (II)
• Continuous deformation alone is NOT able to change 

the topology of template mesh.
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Possible Way: Stitching Multiple 
Surfaces?

• Idea 1: Multiple template mesh.
11

Deep Neural 

Network

Groueix et al, AtlasNet:A papier-mâché approach to learning 
3d surface generation, CVPR 2018



Possible Way: Stitching Multiple 
Surfaces?

• Idea 1: Multiple template mesh.
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Deep Neural 

Network

Groueix et al, AtlasNet:A papier-mâché approach to learning 
3d surface generation, CVPR 2018



Possible Way: Stitching Multiple 
Surfaces?

• Issues of multiple templates.


- Self-intersections and overlaps caused by multiple 
disconnected patches.


- Hard to generate a proper deformation that can 
cover the surface with low distortion.
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Groueix et al, AtlasNet:A papier-mâché approach to learning 
3d surface generation, CVPR 2018



Possible Way: Modifying Shape 
Topology?

• Idea 1: Multiple template mesh.


• Idea 2: Modify template topology by removing mesh 
faces. 

14
Pan et al,Deep mesh reconstruction from single rgb images 
via topology modification networks, ICCV 2019.



Possible Way: Modifying Shape 
Topology?

• Problems of modify template topology by removing 
mesh faces:


- Nontrivial to determine a proper pruning threshold. 


- Open boundaries introduced by the face pruning.


- Hard to generate a proper face pruning for complex 
shapes.
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Summary

• Often have issues with local minimums in optimization


• Adding topology constraints is hard

16



L8: 3D Networks

Hao Su

Machine Learning meets Geometry



Volumetric CNN



Voxelization
Represent the occupancy of regular 3D grids
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3D CNN on Volumetric Data

3D convolution uses 4D kernels



Complexity Issue
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AlexNet, 2012 3DShapeNets, 
2015Input resolution: 224x224

Input resolution: 30x30x30224x224=50176

224x224=27000



Complexity Issue
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Occupancy Grid

30x30x30

Polygon Mesh

Information loss in voxelization



Idea 1: Learn to Project
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Su et al., “Volumetric and Multi-View CNNs for Object 
Classification on 3D Data”, CVPR 2016

Idea: “X-ray” rendering + Image (2D) CNNs

very low #param, very low computation

Many other works in autonomous driving that 
uses bird’s eye view for object detection



More Principled: Sparsity of 3D Shapes
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Resolution: 32 64 128
Occupancy:



Store only the Occupied Grids
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• Store the sparse surface signals

• Constrain the computation near the surface



Octree: Recursively 

Partition the Space

• Each internal node has exactly eight children

• Neighborhood searching: Hash table
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GPU Memory
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Implementation

• SparseConvNet

- https://github.com/facebookresearch/

SparseConvNet
- Uses ResNet architecture

- State-of-the-art for 3D analysis

- Takes time to train
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Graham et al., “Submanifold Sparse Convolutional Networks”, arxiv

https://github.com/facebookresearch/SparseConvNet
https://github.com/facebookresearch/SparseConvNet


Point Networks



Point cloud
(The most common 3D sensor data)



Directly Process Point Cloud Data
End-to-end learning for unstructured, unordered 

point data 

31

PointNet Object 
Classification

Qi, Charles R., et al. "Pointnet: Deep learning on point 
sets for 3d classification and segmentation”, CVPR 2017

Zaheer, Manzil, et al. "Deep sets”, NeurIPS 2017 



2D array representation

N

D

Properties of a Desired Point Network 

32

Point cloud: N orderless points, each represented by a 
D dim coordinate



2D array representation

N

D

Permutation invariance

Transformation invariance

Properties of a Desired Point Network 
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Point cloud: N orderless points, each represented by a 
D dim coordinate



Permutation Invariance of PointNet



Permutation Invariance
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Point cloud: N orderless points, each represented by a 
D dim coordinate

2D array representation

N

D

N

D

represents the same set as 



Permutation Invariance: 
Symmetric Function
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Examples:

…

f (x1, x2,…, xn ) = max{x1, x2,…, xn}
f (x1, x2,…, xn ) = x1 + x2 +…+ xn

f (x1, x2,…, xn ) ≡ f (xπ1 , xπ2 ,…, xπn ) xi ∈!
D,



Construct a Symmetric Function
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(1,2,3)

(1,1,1)

(2,3,2)

(2,3,4)

h

Observe:

f (x1, x2,…, xn ) = γ ! g(h(x1),…,h(xn )) gis symmetric if      is symmetric



Construct a Symmetric Function
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simple symmetric function

h

g

Observe:

f (x1, x2,…, xn ) = γ ! g(h(x1),…,h(xn )) gis symmetric if      is symmetric

(1,2,3)

(1,1,1)

(2,3,2)

(2,3,4)



Construct a Symmetric Function
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simple symmetric function

PointNet (vanilla)

h

g γ

Observe:

f (x1, x2,…, xn ) = γ ! g(h(x1),…,h(xn )) is symmetric if      is symmetricg

(1,2,3)

(1,1,1)

(2,3,2)

(2,3,4)



Q: What Symmetric Functions 
Can Be Constructed by PointNet?

40

PointNet 
(vanilla)

Symmetric functions



Universal Approximation 
Theorem

PointNet (vanilla)S ⊆ !d ,

• Can approximate any “continuous” functions over sets

• “Continuous”: A function value would change by little if 

the point positions vary by little
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A Detailed Implementation of PointNet



PointNet Classification Network
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PointNet Classification Network
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Marginally helpful when dataset is big



PointNet Classification Network
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PointNet Classification Network
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Marginally helpful when dataset is big



PointNet Classification Network
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PointNet Classification Network
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PointNet Classification Network
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Extension to Segmentation 	Network

50

local 
embedding

global 
feature
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local 
embedding

global 
feature

Extension to Segmentation 	Network



Robustness to Data Corruption

52

dataset: ModelNet40; metric: 40-class 
classification accuracy (%)



Robustness to Data Corruption

53

Less than 2% accuracy drop with 50% missing data

dataset: ModelNet40; metric: 40-class 
classification accuracy (%)



Robustness to Data Corruption
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dataset: ModelNet40; metric: 40-class 
classification accuracy (%)



Robustness to Data Corruption
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Why is PointNet so 
robust to missing 
data?

3D CNN



Visualizing Global Point Cloud 
Features
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maxpool

sharedn

MLP

global feature

3 1024

Which input points are contributing to the global feature?

(critical points)



Visualizing Global Point Cloud 
Features

57

Original Shape:

Critical Point Set:



Visualizing Global Point Cloud 
Features
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maxpool

sharedn

MLP

global feature

3 1024

Which points won’t affect the global feature?
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Original Shape:

Critical Point Set:

Upper bound set:

Visualizing Global Point Cloud 
Features



Interpretation to “First Layer”
• Think of each dimension as a “binary” variable (the truth is a soft 

version)

• It encodes whether the point is in a certain spatial region

• The shape of the spatial region is learned


3D voxels of irregular boundaries!
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x

y

z

h …

hi ( ⃗x ) : ℝ 3→ ℝ



Limitations of PointNet
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3D CNN (Wu et al.) PointNet (vanilla) (Qi et al.)

Global feature learning

Either one point or all points

• No local context for each point!

• Global feature depends on absolute coordinate. Hard to 

generalize to unseen scene configurations!

Hierarchical feature learning

 Multiple levels of abstraction



PointNet v2.0: Multi-Scale PointNet
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N points in 
(x,y)

N1 points in 
(x,y,f)

N2 points in 
(x,y,f’)

Repeat

• Sample anchor points by FPS

• Find neighborhood of anchor points

• Apply PointNet in each neighborhood to mimic convolution



Overcoming Non-Uniform Surface 
Sampling Issue



Real Point Clouds are Non-Uniform
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Sampling Caused Domain Gap

65

Labeled 
source 
domain

Unlabeled 
target domain



Sampling Caused Domain Gap
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Some Directions to 

Address the Issue

1. Randomly throw away some points in the training 
data by a dropout layer (as in PointNet++)


2. Learn to canonicalize the point cloud


3. Use an interpolatable kernel for convolution (as in 
KPConv)
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Learn to Canonicalize the Point Cloud
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Yi et al, “Complete & Label: A Domain Adaptation Approach to Semantic 
Segmentation of LiDAR Point Clouds”, arxiv, 2020



Method Overview
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Yi et al, “Complete & Label: A Domain Adaptation Approach to Semantic 
Segmentation of LiDAR Point Clouds”, arxiv, 2020



Method Overview
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Yi et al, “Complete & Label: A Domain Adaptation Approach to Semantic 
Segmentation of LiDAR Point Clouds”, arxiv, 2020



Training Data Preparation
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Yi et al, “Complete & Label: A Domain Adaptation Approach to Semantic 
Segmentation of LiDAR Point Clouds”, arxiv, 2020



complete scene point 
cloud

72

Yi et al, “Complete & Label: A Domain Adaptation Approach to Semantic 
Segmentation of LiDAR Point Clouds”, arxiv, 2020



complete scene point 
cloud

Reference 
frame
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Yi et al, “Complete & Label: A Domain Adaptation Approach to Semantic 
Segmentation of LiDAR Point Clouds”, arxiv, 2020
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complete scene point 
cloud

Reference 
frame

simulated 
samples

Yi et al, “Complete & Label: A Domain Adaptation Approach to Semantic 
Segmentation of LiDAR Point Clouds”, arxiv, 2020



Sparse Voxel Completion 
Network (SVCN)
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Yi et al, “Complete & Label: A Domain Adaptation Approach to Semantic 
Segmentation of LiDAR Point Clouds”, arxiv, 2020



• Continuous conv: 


• Empirical conv: 


• Learn kernel value at anchor points and interpolate to 
build continuous kernel

•

(F ⇤ g)(x) =
Z

g(y � x)f(y)dy
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Interpolated Kernel for Convolution

�
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: RBF kernel

Atzmon et al., “Point Convolutional Neural Networks by 
Extension Operators”, Trans. on Graphics, 2018

Thomas et al., “KPConv: Flexible and Deformable 
Convolution for Point Clouds”, ICCV 2019

Check by yourself


