

Cont. of Single-Image to 3D

Hao Su

Image to Surfaces:

Brief Introduction to the Progress of Mesh Editing

Loss II: Uniform Vertices Distribution

- Penalizes the flying vertices and overlong edges to guarantee the high quality of recovered 3D geometry
- Encourage equal edge length between vertices

$$L_{\text{unif}} = \sum_{p} \sum_{k \in N(p)} \|p - k\|_2^2$$

$$L_{\text{unif}} = \sum_{p} \sum_{q \in N(p)} \|p - q\|_2^2$$

Effect of minimizing l when fixing topology and setting boundary points to the new positions

How to Implement?

- Laplacian matrix:
 - A: adjacency matrix $(n \times n)$
 - $D = \text{diag}(A \cdot 1)$ (diagonal matrix, $n \times n$)
 - -L = D A

• Let $X = [p_1, p_2, ..., p_n]^T$ (an $n \times 3$ matrix) whose each column is a point coordinate, and denote the block matrix of $X = [X_1, X_2, X_3]$, then:

-
$$\sum_{p} \sum_{q \in N(p)} ||p - q||^2 = \operatorname{tr}(X^T L X) = \sum_{i=1}^{3} X_i^T L X_i$$

How to Implement?

minimize_{X_i}
$$\sum_{i=1}^{3} X_i^T L X_i$$
+other losses (e.g, CD or EMD)
subject to $A_i X_i = b_i \forall i$ (boundary conditions)

Challenges of Mesh Editing (I)

 In deformation based method, how do we parameterize the movement of vertices of a template mesh?

Challenges of Mesh Editing (I)

• While one can control at vertices/edges level, we may expect to find low-dimensional control handles

Deformation Field

• The movement of the control points warps the space, hence warps any matter in the space

Defer to later lecture

Challenges of Mesh Editing (II)

• Continuous deformation alone is NOT able to change the topology of template mesh.

Possible Way: Stitching Multiple Surfaces?

• Idea 1: Multiple template mesh.

Groueix et al, AtlasNet:A papier-mâché approach to learning 3d surface generation, CVPR 2018 11

Possible Way: Stitching Multiple Surfaces?

• Idea 1: Multiple template mesh.

Groueix et al, AtlasNet:A papier-mâché approach to learning 3d surface generation, CVPR 2018 12

Possible Way: Stitching Multiple Surfaces?

- Issues of multiple templates.
 - Self-intersections and overlaps caused by multiple disconnected patches.
 - Hard to generate a proper deformation that can cover the surface with low distortion.

Groueix et al, **AtlasNet:A papier-mâché approach to learning 3d surface generation**, CVPR 2018

Possible Way: Modifying Shape Topology?

- Idea 1: Multiple template mesh.
- Idea 2: Modify template topology by removing mesh faces.

Possible Way: Modifying Shape Topology?

- Problems of modify template topology by removing mesh faces:
 - Nontrivial to determine a proper pruning threshold.
 - Open boundaries introduced by the face pruning.
 - Hard to generate a proper face pruning for complex shapes.

• Often have issues with local minimums in optimization

Adding topology constraints is hard

Machine Learning meets Geometry

L8: 3D Networks

Hao Su

Volumetric CNN

Voxelization

Represent the occupancy of regular 3D grids

3D CNN on Volumetric Data

3D convolution uses 4D kernels

Complexity Issue

AlexNet, 2012

Input resolution: 224x224 224x224=50176

3DShapeNets, 2015

Input resolution: 30x30x30 224x224=27000

Complexity Issue

Polygon Mesh Occupancy Grid 30x30x30

Information loss in voxelization

Idea 1: Learn to Project

Idea: "X-ray" rendering + Image (2D) CNNs very low #param, very low computation

23

Su et al., "Volumetric and Multi-View CNNs for Object Classification on 3D Data", *CVPR 2016*

Many other works in autonomous driving that uses **bird's eye view** for object detection

More Principled: Sparsity of 3D Shapes

Store only the Occupied Grids

- Store the sparse surface signals
- Constrain the computation near the surface

Octree: Recursively Partition the Space

- Each internal node has exactly eight children
- Neighborhood searching: Hash table

Memory Efficiency

Implementation

- SparseConvNet
 - <u>https://github.com/facebookresearch/</u>
 <u>SparseConvNet</u>
 - Uses ResNet architecture
 - State-of-the-art for 3D analysis
 - Takes time to train

Graham et al., "Submanifold Sparse Convolutional Networks", arxiv

Point Networks

Point cloud (The most common 3D sensor data)

Directly Process Point Cloud Data

End-to-end learning for **unstructured**, **unordered** point data

Qi, Charles R., et al. "**Pointnet: Deep learning on point sets for 3d classification and segmentation**", CVPR 2017 Zaheer, Manzil, et al. "**Deep sets**", NeurIPS 2017

Properties of a Desired Point Network

Point cloud: N **orderless** points, each represented by a D dim coordinate

Properties of a Desired Point Network

Point cloud: N **orderless** points, each represented by a D dim coordinate

2D array representation

Permutation invariance

Transformation invariance

Permutation Invariance of PointNet

Permutation Invariance

Point cloud: N **orderless** points, each represented by a D dim coordinate

2D array representation

Permutation Invariance: Symmetric Function

$$f(x_1, x_2, \dots, x_n) \equiv f(x_{\pi_1}, x_{\pi_2}, \dots, x_{\pi_n}) \, x_i \in \mathbb{R}^D$$

Examples:

. . .

$$f(x_1, x_2, \dots, x_n) = \max\{x_1, x_2, \dots, x_n\}$$
$$f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n$$
Construct a Symmetric Function

Observe:

 $f(x_1, x_2, ..., x_n) = \gamma \circ g(h(x_1), ..., h(x_n))$ is symmetric if g is symmetric

Construct a Symmetric Function

Observe:

 $f(x_1, x_2, ..., x_n) = \gamma \circ g(h(x_1), ..., h(x_n))$ is symmetric if g is symmetric

Construct a Symmetric Function

Observe:

 $f(x_1, x_2, ..., x_n) = \gamma \circ g(h(x_1), ..., h(x_n))$ is symmetric if g is symmetric

Q: What Symmetric Functions Can Be Constructed by PointNet?

Symmetric functions

PointNet (vanilla)

Universal Approximation Theorem

- Can approximate any "continuous" functions over sets
- "Continuous": A function value would change by little if the point positions vary by little

$$\left| f(S) - \left(\begin{array}{c} MAX_{x_i \in S} \left\{ h(x_i) \right\} \right) \right| < \epsilon$$

$$S \subseteq \mathbb{R}^d, \quad \text{PointNet (vanilla)}$$

A Detailed Implementation of PointNet

input points

Marginally helpful when dataset is big

Marginally helpful when dataset is big

Extension to Segmentation Network

Extension to Segmentation Network

dataset: ModelNet40; metric: 40-class classification accuracy (%)

Less than 2% accuracy drop with 50% missing data

dataset: ModelNet40; metric: 40-class classification accuracy (%)

dataset: ModelNet40; metric: 40-class classification accuracy (%)

Why is PointNet so robust to missing data?

Which input points are contributing to the global feature? (critical points)

Original Shape:

Critical Point Set:

Which points won't affect the global feature?

Original Shape:

Critical Point Set:

Upper bound set:

Interpretation to "First Layer"

- Think of each dimension as a "binary" variable (the truth is a soft version)
- It encodes whether the point is in a certain spatial region
- The shape of the spatial region is learned
 3D voxels of irregular boundaries!

Limitations of PointNet

<u>Hierarchical</u> feature learning <u>Multiple levels</u> of abstraction

stride 2

30

3D voxel input

48 filters of

<u>Global</u> feature learning Either <u>one</u> point or <u>all</u> points

3D CNN (Wu et al.)

PointNet (vanilla) (Qi et al.)

• No local context for each point!

stride 1

512 filters of

stride 2

S

13

60 filters of

• Global feature depends on absolute coordinate. Hard to generalize to unseen scene configurations!

PointNet v2.0: Multi-Scale PointNet

Repeat

- Sample anchor points by FPS
- Find neighborhood of anchor points
- Apply PointNet in each neighborhood to mimic convolution

Overcoming Non-Uniform Surface Sampling Issue

Real Point Clouds are Non-Uniform

Sampling Caused Domain Gap

Sampling Caused Domain Gap

(a) captured by a 64-beam LiDAR (b) captured by a 32-beam LiDAR

Some Directions to Address the Issue

- 1. Randomly throw away some points in the training data by a dropout layer (as in PointNet++)
- 2. Learn to canonicalize the point cloud
- 3. Use an interpolatable kernel for convolution (as in KPConv)

Learn to Canonicalize the Point Cloud

(b) captured by a 32-beam LiDAR

Yi et al, "Complete & Label: A Domain Adaptation Approach to Semantic Segmentation of LiDAR Point Clouds", arxiv, 2020

Method Overview

Yi et al, "Complete & Label: A Domain Adaptation Approach to Semantic Segmentation of LiDAR Point Clouds", arxiv, 2020

Method Overview

Yi et al, "Complete & Label: A Domain Adaptation Approach to Semantic Segmentation of LiDAR Point Clouds", arxiv, 2020

Training Data Preparation

(a) complete scene point cloud

(b) simulated incomplete point cloud with sampling pattern transferred from Waymo sampling pattern transferred from nuScenes

Yi et al, "Complete & Label: A Domain Adaptation Approach to Semantic Segmentation of LiDAR Point Clouds", arxiv, 2020

Yi et al, "Complete & Label: A Domain Adaptation Approach to Semantic Segmentation of LiDAR Point Clouds", arxiv, 2020

Reference frame

Yi et al, "Complete & Label: A Domain Adaptation Approach to Semantic Segmentation of LiDAR Point Clouds", arxiv, 2020

θ

Reference frame

Yi et al, "Complete & Label: A Domain Adaptation Approach to Semantic Segmentation of LiDAR Point Clouds", arxiv, 2020

Sparse Voxel Completion Network (SVCN)

Yi et al, "Complete & Label: A Domain Adaptation Approach to Semantic Segmentation of LiDAR Point Clouds", arxiv, 2020

Interpolated Kernel for Convolution

- Continuous conv: $(\mathcal{F} * g)(x) = \int g(y x)f(y)dy$
- Empirical conv: $(\mathcal{F} * g)(x) = \sum g(x_i x)f_i$

 $x_i \in \mathcal{N}_r$

 Learn kernel value at anchor points and interpolate to build continuous kernel
Atzmon et al., "Point Convolutional Neural Networks by
Extension Operators", Trans. on Craphics, 2019

$$\kappa_{jm}(z) = \sum_{l} k_{ljm} \Phi(|z - y_l|)$$

 Φ : RBF kernel

Atzmon et al., "Point Convolutional Neural Networks by Extension Operators", *Trans. on Graphics, 2018* Thomas et al., "KPConv: Flexible and Deformable Convolution for Point Clouds", *ICCV 2019*

Check by yourself