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Agenda

» Task

 Synthesis-for-Learning Pipeline
 Single-image to Depth Map

* Single-image to Point Cloud

 Single-image to Mesh
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Image source: UW CSE455



Can We Infer 3D from just
a Single Image?






Many Cues That Allow
3D Estimation

contrast

color

texture

motion

symmetry

part

category-specific 3D
knowledge



Learning-based 3D
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Network




Synthesis-for-Learning Pipeline



Where Are My Training Data?

* In general, training deep networks needs a lot of data
with labels!

* In our case, we need many image-3D shape pairs...

 Before talking about learning algorithms, obtaining
training data is already a challenge!
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Source I: Real Data

* Many techniques

* |Indoor: ToF or stereo sensors
(Kinect, RealSense, ...)

e Qutdoor: LIDAR

« The amount of real data is
Increasing quickly
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Source ll: Synthesis for Learning

Training
Shape (3D form)

i
Rendering

Shape @ Learner

A4

Dataset

Synthetic Images (2D form)

[Su et al., RenderForCNN, ICCV15]
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Source ll: Synthesis for Learning

Training

Shape (3D form) /
Rendering
Shape @ Learner |

— -. Deep Neural Network

Synthetic Images (2D form)

A4

Dataset

[Su et al., RenderForCNN, ICCV15]
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Source ll: Synthesis for Learning

« For example, image — point cloud

45

2D image 3D model 3D point cloud
(rendering) (sampling)

SRR

L
.-‘JL{‘.f_Jl"b.d "

14



Large-Scale Synthetic 3D Dataset

* For example,
- ShapeNet: http://www.shapenet.org
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http://www.shapenet.org

A Very Coarse Literature Review



Literature: to Depth Map

* Fully-convolutional

(a) Normal map

Input image

(b) Depth map

Qi et al., “GeoNet: Geometric Neural Network for Joint Depth and 17
Surface Normal Estimation”, CVPR 2018



Recall: Issue of Lp Depth Loss

Prediction Groundtruth
« Common strategy: Depth-Normal consistency
* Review last lecture
* Limitation: partial 3D info from camera view

Qi et al., “GeoNet: Geometric Neural Network for Joint Depth and 18
Surface Normal Estimation”, CVPR 2018



Literature: to Point Cloud

* From a single image to 3D point cloud generation.

Input image Reconstructed 3D point cloud

Fan et al., “A Point Set G tion Network for 3D Object H = =
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Literature: to Mesh

* From a single image to mesh surface.

Input image Reconstructed 3D mesh

Groueix et al, AtlasNet:A papier-maché approach to learning

3d surface generation, CVPR 2018 . . .
20 Explain with Details Later



Literature: to Implicit Field Function

* From a single image to implicit field function.

Input image Implicit field function Fx)=0

Mescheder et al., “Occupancy networks: Learning 3d
reconstruction in function space”, CVPR 2019

21 Check by Yourself



Image to Point Cloud



Why Point Representation?

* Previous depth map covers only visible area.
 Aflexible representation

- A few thousands of points can model a great variety
of shapes.

=
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Point Cloud as a Set

- 3D mesh
v sampling

asS
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Pipeline
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Fan et al., “A Point Set Generation Network for 3D Object Recggstruction from a Single Image”, CVPR 2017



Real-world Results

Some results

input observed view 90° input observed view 90°
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Differentiable Loss for Point Clouds



Permutation Invariance

* Point cloud: N orderless points, each represented by a

D dim vector
> >
- represents the same set as -

v
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Permutation Invariance

* Point cloud: N orderless points, each represented by a

D dim vector
P> >
- represents the same set as -

v \{

Loss needs to be invariant to ordering of points!
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Metric for Point Clouds

* L2 loss does not work for point cloud.

* Need a metric to measure distance between two point
sets

« Two popular choices

- Earth Mover’s Distance
- Chamfer Distance
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Earth Mover’s Distance

* Find a 1-1 correspondence between point sets
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Earth Mover’s Distance

* Find a 1-1 correspondence between point sets

]

‘\ P
A

dgyp(51,5,) = min Z [x = @)l
qb:Sl_)SszSl

where ¢ : §; = S, is a bijection
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deyp(S1,8;) = m1n Z lx — )|,

1515 2 xeS,
where ¢ : §; = S, is a bijection

Question:

Viewing dgy,p(S1, S,) as a function of point
coordinates in 3y, is this function continuous?
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Lemma

. For a family of continuous functions {f,(x)}, the point-
wise minimum f(x) = min{f,(x)} is continuous.
i

F(x) 4 Fx

7 ()

=V
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ContiHUity of dEMD(Sl’ S2)

deyp(S1,8,) = m1n Z lx — )|,

ﬁ
51 2 xes,

where ¢ : Sl — §, is a bijection

. ¢(x) defines a point-wise correspondence (7!
possibilities, n = size of §;).
+ For afixed ¢, define £,(S)) = )’ [lx — ¢p@)ll,, and £(S)

XES,
IS obviously continuous

* dpyp(51,5,) = min_ f,(S5) is thus continuous!

$:51—8S,
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Differentiable?

dgyp(S1,57) = min Z [x = @)l
Sl—) 2X€Sl
where ¢ : §; = S, is a bijection

. From the example, we see that d,,(S;, $,) can be
constructed in a piece-wise manner

. Inside each piece, it is f(p,.(Sl) by some ¢;, which is
obviously differentiable (as ¢.(x) is a constant)

o dpyp(Sy, S,) is differentiable except for zero-measure
set!

36



Implementation

* Many algorithmic study on fast EMD computation (a
specific bipartite matching problem)

* There exists parallelizable implementation of EMD on
CUDA

 Afast implementation (approximated EMD): https://
github.com/Colin97/MSN-Point-Cloud-Completion (by
courtesy Minghua Liu)
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https://github.com/Colin97/MSN-Point-Cloud-Completion
https://github.com/Colin97/MSN-Point-Cloud-Completion
https://github.com/Colin97/MSN-Point-Cloud-Completion

Chamfer Distance

* Nearest neighbor correspondence for each point

~

<
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Chamfer Distance

* Nearest neighbor correspondence for each point

~

<

~

dep(S1,$) = ) min flx = y|3 + 2 min [lx = I

eS XES
XES; Y=22 yES, :
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Differentiability?

« Similar argument as EMD computation.

40



How Distance Metric Affect Learning?

» A fundamental issue: inherent ambiguity in 2D-3D
dimension lifting.

= |
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How Distance Metric Affect Learning?

» A fundamental issue: inherent ambiguity in 2D-3D
dimension lifting.

= | )

* By loss minimization, the network tends to predict a
“mean shape” that averages out uncertainty
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Distance Metrics Affect Mean Shapes

 The mean shape carries characteristics of the
distance metric.

Continuous /-- {
hidden variable ) O
(radius) S~ R
Discrete %.:

| . ne i
hidden variable j’., LSEE o
(add-on location) L3 .

Input EMD mean CD mean
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Network Choice: Certain Tricks

E.g., ConvNet+FC/UpConv

)

Fan et al., “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017
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Network Design: Respect Natural
Statistics of Geometry

a ¥

Ve

P

* Many local structures are common

Read by Yourself

Fan et al., “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017
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Network Design: Respect Natural
Statistics of Geometry

=

« Many local structures are common

 Also some intricate structures
Read by Yourself

Fan et al., “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017
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Two-Branch Architecture

i> ,,,,,,,,,,,

Upconv

g ﬁ branch 2 -
@.._g -
| N < B

Read by Yourself

Fan et al., “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017



Two-Branch Architecture

Smooth

i> ,,,,,,,,,,,

Upconv

g ﬂ branch 2 -
aee — :
L & i> o
branch -
Non-Smooth
Read by Yourself

Fan et al., “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017



Two-Branch Architecture

Smooth

i> ,,,,,,,,,,,

Upconv

_ony 2 ﬂ branch

bl =.— o NX3% o
L j & FC o

branch e

(M+N)x3

Non-Smooth

Set union by array
concatenation
Read by Yourself

Fan et al., “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017



Which color corresponds to the
upconv branch? FC branch?

o, - i
|
Prediction \ ' .

Read by Yourself

Fan et al., “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017




Design of Upconvolution Branch

Smooth

Upconv o
—

Set union by array

concatenation
Read by Yourself

Fan et al., “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017



Design of Upconvolution Branch

goordlnate map
(i, i, i)

=

Read by Yourself

Fan et al., “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017

Nx3



Learns a Surface
Parameterization

Smooth parameterization from 2D to @h%}

S
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Read by Yourself



Learns a Surface
Parameterization

Smooth parameterization from 2D to @ M)

Consistent across objects

[image credit: Keenan

Read by Yourself



Image to Surfaces



Mesh Representation

* Previous point representation predicts only geometry
without point connectivity.

* Mesh elements include mesh connectivity and mesh
geometry G = (V, E).
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Topology Ambiguity

« Can we regress the vertices and edges from neural
network?

- Estimate vertices as a set of points.

- Estimate edges?
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Designing Loss for Edge Prediction is Hard

« Key observation: given vertices, there are many
possible ways to connect them and represent the
same underlying surface:

G=WV,E) G=(V,E

58



Image — Intermediate Repr. — Mesh

* One option is to first build a high-resolution
intermediate representation, and then convert the
point cloud to mesh

* Intermediate representations:
- Voxel
- Implicit surface
- Point cloud

59



Image — Intermediate Repr. — Mesh

* One option is to first build a high-resolution
intermediate representation, and then convert the
point cloud to mesh

* Intermediate representations:
- Voxel
- Implicit surface
- Point cloud

Defer to a later lecture!
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Editing-based Mesh Modeling

« Can we model mesh without predicting edges?

Mesh Editing-based
Methods

61



Editing-based Mesh Modeling

» Key idea: starting from an established mesh and
modify it to become the target shape

Ap;
o 12
Input image Deep Neural Ap
Network - "

Mesh template
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Editing-based Mesh Modeling

» Key idea: starting from an established mesh and
modify it to become the target shape

For example, deformation-based modeling:

Ap,
-y B
Input image Deep Neural Ap
Network S

Mesh template

Deform
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Losses for Mesh Editing



Some Example Losses

Vertices distance.
- Vertices point set distance.

Uniform vertices distribution.
- Edge length regularizer.

Mesh surface smoothness.

Normal Loss.
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Loss I: Set Distance between Vertices

 Vertices are a set of points

* Recall the metrics for point clouds

Earth Mover’s distance Chamfer distance

devip(S;,S,) = min an PO, dep(S,.S,) = mellx y||2+2m1n||x ylI3

YT ye
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Loss ll: Uniform Vertices Distribution

- Penalizes the flying vertices and overlong edges to
guarantee the high quality of recovered 3D geometry

* Encourage equal edge length between vertices

Lynit= 2, 2. P =Kl

p keN(p)
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Lunif = 2, 2, lIp = Il

p kEN(p)

Effect of minimizing [ when fixing topology and
setting boundary points to the new positions
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Loss lll: Mesh Smoothness

. L., encourages that intersection angles of faces

are close to 180 degrees.

Lsmooth — 2 (COS Hi + 1)2

\/
vS"

Read by Yourself
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Loss IV: Normal Loss

« Key assumption: vertices within a local neighborhood
lie on the same tangent plane.

* Regularize edge to be perpendicular to the underlying
groundtruth surface normal

—
AN

Read by Yourself
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Loss IV: Normal Loss

 But how to find the vertices normal?

* One approach: use the nearest ground truth point
normal as current vertex normal.

Read by Yourself
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Loss IV: Normal Loss

 But how to find the vertices normal?

* One approach: use the nearest ground truth point
normal as current vertex normal.

* Penalize the edge direction to perpendicular to vertex

normal.
ln, = Zp Zq?argmfinq(llp—qllg) ||(p —k,nq>||%

Read by Yourself
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