

Machine Learning meets Geometry

# L7: Single-Image to 3D

## Hao Su

Slides prepared by Dr. Songfang Han



- Task
- Synthesis-for-Learning Pipeline
- Single-image to Depth Map
- Single-image to Point Cloud
- Single-image to Mesh



# **Review: Multi-View Stereo**



Image source: UW CSE455

# Can We Infer 3D from just a Single Image?



# Many Cues That Allow 3D Estimation

contrast

color

texture

motion

symmetry

part





category-specific 3D knowledge

# Learning-based 3D Reconstruction



# **Synthesis-for-Learning Pipeline**

# Where Are My Training Data?

- In general, training deep networks needs a lot of data with labels!
- In our case, we need many image-3D shape pairs...
- Before talking about learning algorithms, obtaining training data is already a challenge!

# Source I: Real Data

- Many techniques
  - Indoor: ToF or stereo sensors (Kinect, RealSense, ...)
  - Outdoor: LiDAR





• The amount of real data is increasing quickly

# **Source II: Synthesis for Learning**



# **Source II: Synthesis for Learning**



# **Source II: Synthesis for Learning**

• For example, image  $\rightarrow$  point cloud



# Large-Scale Synthetic 3D Dataset

- For example,
  - ShapeNet: http://www.shapenet.org



## **A Very Coarse Literature Review**

# Literature: to Depth Map

Fully-convolutional



Input image



(a) Normal map



(b) Depth map

Qi et al., "GeoNet: Geometric Neural Network for Joint Depth and Surface Normal Estimation", CVPR 2018

# **Recall: Issue of** $L_p$ **Depth Loss**





## Prediction Groundtruth

- Common strategy: Depth-Normal consistency
- Review last lecture
- Limitation: partial 3D info from camera view

Qi et al., "GeoNet: Geometric Neural Network for Joint Depth and Surface Normal Estimation", CVPR 2018

# **Literature: to Point Cloud**

• From a single image to 3D point cloud generation.



Input image



Reconstructed 3D point cloud

**Explain with Details Later** 



# Literature: to Mesh

• From a single image to mesh surface.



Input image

Reconstructed 3D mesh

Groueix et al, AtlasNet:A papier-mâché approach to learning 3d surface generation, CVPR 2018

### <sup>20</sup> Explain with Details Later

# **Literature: to Implicit Field Function**

• From a single image to implicit field function.



Mescheder et al., "Occupancy networks: Learning 3d reconstruction in function space", CVPR 2019

### **Check by Yourself**

# **Image to Point Cloud**

# Why Point Representation?

- Previous depth map covers only visible area.
- A flexible representation
  - A few thousands of points can model a great variety of shapes.



# Point Cloud as a Set



# **Pipeline**



Fan et al., "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017 25

# **Real-world Results**

#### Some results



## **Differentiable Loss for Point Clouds**

# **Permutation Invariance**

 Point cloud: N orderless points, each represented by a D dim vector



# **Permutation Invariance**

 Point cloud: N orderless points, each represented by a D dim vector



## Loss needs to be invariant to ordering of points!

# **Metric for Point Clouds**

• L2 loss does not work for point cloud.

- Need a metric to measure distance between two point sets
- Two popular choices
  - Earth Mover's Distance
  - Chamfer Distance

# **Earth Mover's Distance**

• Find a 1-1 correspondence between point sets



# **Earth Mover's Distance**

• Find a 1-1 correspondence between point sets



 $d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} \|x - \phi(x)\|_2$ where  $\phi: S_1 \to S_2$  is a bijection

$$\begin{aligned} d_{EMD}(S_1,S_2) &= \min_{\phi:S_1 \to S_2} \sum_{x \in S_1} \|x - \phi(x)\|_2 \\ \text{where } \phi: S_1 \to S_2 \text{ is a bijection} \end{aligned}$$

## **Question:**

Viewing  $d_{EMD}(S_1, S_2)$  as a function of point coordinates in  $S_1$ , is this function **continuous**?

# Lemma

• For a family of continuous functions  $\{f_i(x)\}$ , the pointwise minimum  $f(x) = \min_i \{f_i(x)\}$  is continuous.



Continuity of  $d_{EMD}(S_1, S_2)$   $d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} ||x - \phi(x)||_2$ where  $\phi: S_1 \to S_2$  is a bijection

- $\phi(x)$  defines a point-wise correspondence (*n*! possibilities, *n* = size of *S*<sub>1</sub>).
- For a fixed  $\phi$ , define  $f_{\phi}(S_1) = \sum_{x \in S_1} ||x \phi(x)||_2$ , and  $f_{\phi}(S_1)$

is obviously continuous

• 
$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} f_{\phi}(S_1)$$
 is thus continuous!

# **Differentiable?**

$$\begin{aligned} d_{EMD}(S_1,S_2) &= \min_{\phi:S_1 \to S_2} \sum_{x \in S_1} \|x - \phi(x)\|_2 \\ \text{where } \phi: S_1 \to S_2 \text{ is a bijection} \end{aligned}$$

- From the example, we see that  $d_{\!E\!M\!D}(S_1,S_2)$  can be constructed in a piece-wise manner
- Inside each piece, it is  $f_{\phi_i}(S_1)$  by some  $\phi_i$ , which is obviously differentiable (as  $\phi_i(x)$  is a constant)
- $d_{EMD}(S_1, S_2)$  is differentiable except for zero-measure set!
### Implementation

- Many algorithmic study on fast EMD computation (a specific bipartite matching problem)
- There exists parallelizable implementation of EMD on CUDA
- A fast implementation (approximated EMD): <u>https://</u> <u>github.com/Colin97/MSN-Point-Cloud-Completion</u> (by courtesy Minghua Liu)

### **Chamfer Distance**

• Nearest neighbor correspondence for each point



### **Chamfer Distance**

• Nearest neighbor correspondence for each point



$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2^2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2^2$$

### **Differentiability?**

• Similar argument as EMD computation.

### **How Distance Metric Affect Learning?**

• A fundamental issue: inherent ambiguity in 2D-3D dimension lifting.





### **How Distance Metric Affect Learning?**

• A fundamental issue: inherent ambiguity in 2D-3D dimension lifting.





• By loss minimization, the network tends to predict a "mean shape" that averages out uncertainty

### **Distance Metrics Affect Mean Shapes**

• The mean shape carries characteristics of the distance metric.



### **Network Choice: Certain Tricks**



### Network Design: Respect Natural Statistics of Geometry



Many local structures are common

#### **Read by Yourself**

### Network Design: Respect Natural Statistics of Geometry



- Many local structures are common
- Also some intricate structures

#### **Read by Yourself**

### **Two-Branch Architecture**



#### **Read by Yourself**

### **Two-Branch Architecture**





### **Two-Branch Architecture**



# Which color corresponds to the upconv branch? FC branch?



#### **Read by Yourself**

### **Design of Upconvolution Branch**



### **Design of Upconvolution Branch**



#### **Read by Yourself**

### Learns a Surface Parameterization

Smooth parameterization from 2D to



[image credit: Keenan Crane]



#### **Read by Yourself**

### Learns a Surface Parameterization

## Smooth parameterization from 2D to Consistent across objects







### **Read by Yourself**

### Image to Surfaces

### **Mesh Representation**

- Previous point representation predicts only geometry without point connectivity.
- Mesh elements include mesh connectivity and mesh geometry G = (V, E).



Mesh

## **Topology Ambiguity**

- Can we regress the vertices and edges from neural network?
  - Estimate vertices as a set of points.
  - Estimate edges?

### **Designing Loss for Edge Prediction is Hard**

• **Key observation**: given vertices, there are many possible ways to connect them and represent the same underlying surface:



$$G = (V, E)$$



$$G = (V, E')$$

### $\textbf{Image} \rightarrow \textbf{Intermediate Repr.} \rightarrow \textbf{Mesh}$

- One option is to first build a high-resolution intermediate representation, and then convert the point cloud to mesh
- Intermediate representations:
  - Voxel
  - Implicit surface
  - Point cloud





### $\textbf{Image} \rightarrow \textbf{Intermediate Repr.} \rightarrow \textbf{Mesh}$

- One option is to first build a high-resolution intermediate representation, and then convert the point cloud to mesh
- Intermediate representations:
  - Voxel
  - Implicit surface
  - Point cloud



#### Defer to a later lecture!



### **Editing-based Mesh Modeling**

• Can we model mesh without predicting edges?

### Mesh Editing-based Methods

### **Editing-based Mesh Modeling**

 Key idea: starting from an established mesh and modify it to become the target shape



### **Editing-based Mesh Modeling**

 Key idea: starting from an established mesh and modify it to become the target shape

For example, deformation-based modeling:



### **Losses for Mesh Editing**

### **Some Example Losses**

- Vertices distance.
  - Vertices point set distance.
- Uniform vertices distribution.
  - Edge length regularizer.
- Mesh surface smoothness.
- Normal Loss.

### Loss I: Set Distance between Vertices

- Vertices are a set of points
- Recall the metrics for point clouds



### **Loss II: Uniform Vertices Distribution**

- Penalizes the flying vertices and overlong edges to guarantee the high quality of recovered 3D geometry
- Encourage equal edge length between vertices

$$L_{\text{unif}} = \sum_{p} \sum_{k \in N(p)} \|p - k\|_2^2$$

 $L_{\text{unif}} = \sum \sum ||p - k||_2^2$  $p \quad k \in N(p)$ 

Effect of minimizing l when fixing topology and setting boundary points to the new positions



### Loss III: Mesh Smoothness

•  $L_{smooth}$  encourages that intersection angles of faces are close to 180 degrees.



#### **Read by Yourself**

### Loss IV: Normal Loss

- **Key assumption**: vertices within a local neighborhood lie on the same tangent plane.
- Regularize edge to be perpendicular to the underlying groundtruth surface normal



#### **Read by Yourself**

### Loss IV: Normal Loss

- But how to find the vertices normal?
- One approach: use the nearest ground truth point normal as current vertex normal.

### Loss IV: Normal Loss

- But how to find the vertices normal?
- One approach: use the nearest ground truth point normal as current vertex normal.
- Penalize the edge direction to perpendicular to vertex normal.

