
Starting from this lecture:
• Application-based lecture organization
• Go over important 3D learning techniques
• Introduce key technique points but not all the 

details of a DL pipeline

Teaching Plan



Syllabus
• High-level organization 

3D Reconstruction

3D Recognition

3D Geometry 
Processing

3D Dynamics



L6: Learning-based  
Multi-View Stereo

Hao Su

Machine Learning meets Geometry



Agenda

• Photometric Consistency

• A First Pipeline: Deep Volumetric Stereo

• Key Techniques
- Adaptive Space Sampling
- Depth-Normal Consistency

• Appearance Information Capturing
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Multi-View Stereo (MVS)
Reconstruct the dense 3D shape from a set of images 
and camera parameters
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1. Goldlucke et al. “A Super-resolution Framework for High-Accuracy Multiview Reconstruction”



Applications of MVS
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AR/VR Autonomous Driving Inverse Engineering

Robot Manipulation Remote Sensing

Image source: 1. https://wisdomeweb.com/whats-a-lidar-sensor-and-why-it-on-the-iphone-12-pro/
2. https://cloudblogs.microsoft.com/industry-blog/wp-content/uploads/industry/2019/06/

3. https://www.tecnamachines.com/images/

4. https://scienceinfo.net/data-images/thumbs/

5. https://www.altizure.com/



Photometric Consistency



Triangulation
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Image source: UW CSE455



Stereo from Community Photo 
Collections
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stereo laser scan

Schönberger, Johannes L., Enliang Zheng, Jan-Michael Frahm, and Marc Pollefeys. "Pixelwise view selection for unstructured multi-
view stereo." In European Conference on Computer Vision, pp. 501-518. Springer, Cham, 2016.

https://colmap.github.io/



Limitation of Classical MVS
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Textureless Area Reflection

/Transparency

Repetitive

 patterns

Yi Ma, An Introduction to Holistic 3D Reconstruction, ICCV 2019



Learning-based MVS
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more robust matchingLearned feature

Shape prior more complete reconstruction



A First Pipeline:  
Deep Volumetric Stereo



Volumetric Stereo
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Source view

Source view

Reference view



Volumetric Stereo
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Reference view

Source view

Source view

Reference view
frustum



Volumetric Stereo
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Source view

Source view

Reference view
frustum voxelization

Reference view



Volumetric Stereo
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Source view

Source view

Image feature
warping

Reference view



Volumetric Stereo
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Source view

Source view

3D CNNs

Reference view



Volumetric Stereo
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Source view

Source view

Reference view
depth prediction

Reference view

Weighted sum
along view light



Reference-View Depth Loss

Loss = ∑
p∈Pvalid

d (p) − ̂d (p)
1
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Valid pixels GT depth Depth prediction



Issues

• Quality

• Speed

• Flying points when there is abrupt depth change

• Lacking appearance information
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Perspectives for Improvement

• Adaptively sample the space near the surface

• Stronger loss function
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Adaptive Space Sampling



Coarse-to-fine Sampling

• Analyze per-pixel confidence intervals
• Narrow down the sampling range based on 

uncertainty
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Cheng, Shuo, Zexiang Xu, Shilin Zhu, Zhuwen Li, Li Erran Li, Ravi Ramamoorthi, and Hao Su. "Deep stereo using adaptive thin volume representation 
with uncertainty awareness." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2524-2534. 2020.



Cascaded Depth Prediction
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Input
3D CNN

Uniform  
depth hypotheses

Warping

Multi-scale
feature extractor

Spatially-varying  
depth hypotheses

Warping 3D CNN

Spatially-varying  
depth hypotheses

Warping 3D CNN



Point-based Multi-View 
Stereo Network
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Chen, Rui, Songfang Han, Jing Xu, and Hao Su. "Point-based multi-view stereo network." In Proceedings of the IEEE International Conference on 
Computer Vision, pp. 1538-1547. 2019.

Point cloud representation
• Suitable for sparse occupancy
• Memory-efficient

Read by yourself



Initial Point Cloud
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Initial point cloud
Coarse Depth map

Reference camera Unprojection

Estimate low-resolution depth map with existing 
methods

Read by yourself



Point Flow
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Goal:
Refine the input depth map by moving the   
unprojected points along camera direction

Read by yourself



Flow Prediction
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Flow prediction as expected offset

Reference

camera

expected offset

Read by yourself



Depth-Normal Consistency Loss



Depth Supervision Alone Does 
Not Give Smooth Surface
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Ground truthPrediction



How to Improve Surface 
Smoothness?

• Key observation: Surface smoothness is reflected by 
surface normal.

31

Rough surface Plane surface



Observation:  
Normal Prediction is Easier 
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GT Normal Predicted Normal



Depth Normal Consistency
• Estimate normal along with depth map.
• Regularize depth by normals. 
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Depth 
Estimation

Normal 
Estimation

Consistency?Depth map prediction

Normal map prediction



• Practice 1: Normal estimation as an auxiliary loss
- Already quite effective

• Practice 2: Use normal estimation to correct depth 
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Refine Depth from Normal
• Key assumption: pixels within a local neighborhood 

lie on the same tangent plane. 
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Refine Depth from Normal
• Derive neighbor pixel depth from current pixel normal. 
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𝑧′￼𝑖→𝑗 =
𝑛𝑖𝑥𝑥𝑗 + 𝑛𝑖𝑦𝑦𝑗 + 𝑛𝑖𝑧𝑧𝑗

(𝑢𝑖 − 𝑢0)𝑛𝑖𝑥 /𝑓0 + (𝑣𝑖 − 𝑣0)𝑛𝑖𝑦 /𝑓0 + 𝑛𝑖𝑧
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Summary

• Deep volumetric stereo can lead to more robust 
matching and more complete reconstruction

• But volume-based methods are NOT computationally 
efficient, since the 3D target scene is sparse

• Adaptive sampling can improve computation efficiency 
and reconstruction quality

• Normal prediction  is easier than depth, and can help 
improve depth accuracy and smoothness
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Appearance Information Capturing



• Photometric-consistency gives geometry

• Can we also get the appearance information? 
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General Idea
• The appearance of the surface will be observed at 

views along the camera ray

• If we have a light transport model from the surface 
along the ray to the pixels, we will know the pixel color

• By comparing the pixel color from the light transport 
model and from the ground-truth image, we can build 
a loss
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Ray Marching
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Ray Marching
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Transmission

In-Scatter
& Emission



Ray Marching
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Transmission

In-Scatter
& Emission

Attenuation coefficient  (Transparency) σ

Emission Radiance c



Emission Radiance Passing a 
Ray Segment 
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α(t) = 1 − exp(−σt)Beer-Lambert's Law: 

t = 0 t = δ

opacity attenuation 
coefficient



Emission Radiance Passing a 
Ray Segment 
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∫
δ

0
(1 − α(t))c(t)dt

α(t) = 1 − exp(−σt)Beer-Lambert's Law: 

Light emitted 
along a segment =

t = 0 t = δ

opacity attenuation 
coefficientemission radiance



Emission Radiance Passing a 
Ray Segment 
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∫
δ

0
(1 − α(t))c(t)dt

α(t) = 1 − exp(−σt)Beer-Lambert's Law: 

Light emitted 
along a segment =

t = 0 t = δ

c(t)=c
≈ c∫

δ

0
exp(−σt)dt

=
c
σ

(1 − exp(−δσ))



Emission Radiance Passing a 
Ray Segment 
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∫
δ

0
(1 − α(t))c(t)dt

α(t) = 1 − exp(−σt)Beer-Lambert's Law: 

Light emitted 
along a segment =

t = 0 t = δ

c(t)=c
≈ c∫

δ

0
exp(−σt)dt

=
c
σ

(1 − exp(−δσ)) = α(δ)( c
σ )



Discretized Radiance Integration (Ray Marching)
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A single point

: light intensity after point 1
: predicted emission radiance at point 1
: opacity of point 1

I1
c1
α1

I1 = α1 ( c1

σ1 )



Discretized Radiance Integration (Ray Marching)
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2 points
Point 1 acts like the previous case

Point 2 additionally transmits I2

I2 = α2 ( c2

σ2 ) + (1 − α2)I1

I1 = α1 ( c1

σ1 )



Discretized Radiance Integration (Ray Marching)
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3 points

I3 = α3 ( c3

σ3 ) + (1 − α3)I2 + (1 − α3)(1 − α2)I1

I1 = α1 ( c1

σ1 )
I2 = α2 ( c2

σ2 ) + (1 − α2)I1



Discretized Radiance Integration (Ray Marching)
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In general

Ti =
n

∏
j=i+1

(1 − αj) = exp( −
n

∑
j=i+1

σjδj)

= final radiance of the rayI = ∑
i

Tiαi ( ci

σi )

n: the number of points



Discretized Radiance Integration (Ray Marching)
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(σi,
ci

σi
) = FΘ(x, y, z, θ, ϕ)

Note: It is quite common that  and  are both close 
to zero, so we predict  directly.

σi ci
ci /σi



Pixel Loss

Comparing  with ground-truth pixel value, we get a loss 
(e.g., L1, L2)

I
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I = ∑
i

Tiαi ( ci

σi )



Train Pipeline (as in NeRF)
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(σi,
ci

σi
) Image

Ray Marching 
Algorithm

Ground-Truth 
Image

Gradient Descent

Network
Parameters

Loss

Camera Rays

• Optimize on a single scene

- store the scene in weights of the network


• Require ground-truth camera parameters



Result
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• Novel view synthesis following light transport model 
(  optimized from ~100 views)FΘ



Summary

• We have described a volumetric rendering-based loss 
function for 3D estimation

• The approach takes an implicit neural function 
representation, allowing for infinite resolution

• This is an example of physics-based deep learning 
pipeline

• Knowing the domain knowledge is helpful for building 
network architecture!

56


