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3D Spatial Relationships

• How to represent the relationships between objects?

2Wang et al., “DenseFusion: 6D Object Pose Estimation 
by Iterative Dense Fusion”, CVPR 2019
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Relative position and 
orientation



Prereq: Topology
• Topology: Structural Properties of a Manifold

• Two surfaces  and  are topologically equivalent if 
there is a differentiable bijection between  and 

M N
M N

4



Prereq: Topology
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• More examples:



Rotation and SO(n)



Orientation
• We use “rotation” to represent the relative orientation 

between two frames
• For example,

- Space Frame: 
- Body Frame: 
-  rotates the frame of the space to the frame of 

the body after the origins are aligned

{s} = { ̂xs, ̂ys, ̂zs}
{b} = { ̂xb, ̂yb, ̂zb}

Rsb
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Rotation in ℝ2
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1 Degree of Freedom



Rotation in ℝ3
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3 Degree of Freedoms



The Set of Rotations

•
• : “Special Orthogonal Group”

• “Group”: a group under the matrix multiplication

• “Orthogonal”: 
• “Special”: 

• : 2D rotations, 1 DoF
• : 3D rotations, 3 DoF

SO(n) = {R ∈ ℝn×n : det(R) = 1,RRT = I}
SO(n)

RRT = I
det(R) = 1

SO(2)
SO(3)

10



Topology of SO(n)
• The topology of  is the same as a circleSO(2)
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Topology of SO(n)

• Circles do not have the same topology as 
 No differentiable bijections between  and

• The topology of  is also different from 

Why do we care about the topology?

(−1,1)n

⟹ SO(2)
(−1,1)n

SO(3) (−1,1)n
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Parameterizing Rotation in 
Networks is Tricky
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• An ideal parameterization  to use 
in networks:

1. The domain is  (as network output)

f(θ) : U ↦ SO(2)

(−l, l)n



Parameterizing Rotation in 
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• An ideal parameterization  to use 
in networks:

1. The domain is 
2.  is a differentiable bijection

f(θ) : U ↦ SO(2)

(−l, l)n

f

θ

θ′ 

R

f

f

• If input data points to network are 
close, but the  predictions happen 
to be far after convergence, the 
network (a continuous function) will 
make awful predictions between the 
two data points!

• Need special network design to 
overcome the issue (will discuss in 
future lectures)

θOtherwise: 

near far



Parameterizing Rotation in 
Networks is Tricky

15

• An ideal parameterization  to use 
in networks:

1. The domain is 
2.  is a differentiable bijection
3.  with , there should 

, such that  and 
 for some constant  and 

small  (all movement in  should be 
achieved by movement in the domain with a near 
constant speed)

f(θ) : U ↦ SO(2)

(−l, l)n

f
∀θ ∀y ∈ Tf(θ) ∥y∥ = 1
∃x ∈ Tθ y = Df [x]
c + ϵ > ∥x∥ > c − ϵ c

ϵ SO(n)



Parameterizing Rotation in 
Networks is Tricky

• An ideal parameterization  to use 
in networks:

1. The domain is 
2.  is a differentiable bijection
3.  with , there should 

, such that  and 
 for some constant  and 

small  
• However, 1 and 2 are contradictory by topology!
• For 3, it also creates troubles for the  case.

f(θ) : U ↦ SO(2)

(−l, l)n

f
∀θ ∀y ∈ Tf(θ) ∥y∥ = 1
∃x ∈ Tθ y = Df [x]
c + ϵ > ∥x∥ > c − ϵ c

ϵ

SO(3)
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Euler Angles



Euler Angle is Very Intuitive

18
https://www.programmersought.com/article/8900590257/



Euler Angle to Rotation Matrix
• Rotation about principal axis is represented as:

•  for arbitrary rotation

Rx(α) :=
1 0 0
0 cos α −sin α
0 sin α cos α

Ry(β) :=
cos β 0 sin β

0 1 0
−sin β 0 cos β

Rz(γ) :=
cos γ −sin γ 0
sin γ cos γ 0

0 0 1

R = Rz(α)Ry(β)Rx(γ)
19



Inspection from Learning 
Perspective

• Euler Angle is not unique for some rotations. For 
example,  

20https://www.mecademic.com/resources/Euler-angles/Euler-angles

Rz(45∘)Ry(90∘)Rx(45∘) = Rz(90∘)Ry(90∘)Rx(90∘)

= [
0 0 1
0 1 0

−1 0 0]



Inspection from Learning 
Perspective

• Gimbal lock:
•  is rank-deficient at some  
•  some movement in  cannot be 

achieved

Df θ
⇒ Tf(θ)(SO(3))

21https://www.mecademic.com/resources/Euler-angles/Euler-angles



Inspection from Learning 
Perspective

• For example: When ,

since changing  and  has the same effects, a 
degree of freedom disappears!

β = π/2

α γ

22https://www.mecademic.com/resources/Euler-angles/Euler-angles

R = Rz(α)Ry(π/2)Rx(γ)

=
0 0 1

sin(α + γ) cos(α + γ) 0
−cos(α + γ) sin(α + γ) 0



Summary

• Euler angle can parameterize every rotation and has 
good interpretability

• It is not a unique representation at some points

• There are some points where not every change in the 
target space (rotations) can be realized by a change in 
the source space (Euler angles)
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Axis-Angle



Euler Theorem

• Any rotation in  is equivalent to rotation about a 
fixed axis  through a positive angle 

• : unit vector of rotation axis ( )

• : angle of rotation

•

SO(3)
ω ∈ ℝ3 𝜃

ω̂ ∥ω̂∥ = 1

𝜃

R ∈ SO(3) := Rot(ω̂, θ)
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Given  and , what is ?ω̂ θ R ∈ SO(3)



Skew-Symmetric Matrix

•  is skew-symmetric 

• Skew-symmetric matrix operator: 

,  

• Cross product can be a linear transformation
-

• Lie Algebra of 3D rotation:
-

𝐴 A = − AT

ω =
ω1
ω2
ω3

[ω] :=
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

a × b = [a]b

so(3) := {S ∈ ℝ3×3 : ST = − S}
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Given  and , what is ?ω̂ θ R ∈ SO(3)

• Consider a point . At time , the position is 

• Rotate  with unit angular velocity
   around axis , i.e., 

-  
-

𝑞 t = 0 𝑞0

𝑞
ω̂

𝑣 = ω̂ × r
·q(t) = ω̂ × q(t) = [ω̂]q(t)

28



  (solution of the ODE)

 
 the swept angle 
 
  (exponential map)

•  is also called rotation vector or exponential 
coordinate

·q(t) = ω̂ × q(t) = [ω̂]q(t)
⇒ q(t) = e[ω̂]tq0

∥ω̂∥ = 1
⇒ θ = ∥ω̂t∥ = t
⇒ q(θ) = e[ω̂]θq0
⇒ Rot(ω̂, θ) = e[ω̂]θ = e[ω̂θ]

⃗ω = ω̂θ

29

Given  and , what is ?ω̂ θ R ∈ SO(3)



• Definition of Matrix Exponential:

• Sum of infinite series? Rodrigues Formula
- Can prove that 
- Then, use Taylor expansion of sin and cos
-

[ω̂]3 = − [ω̂]

30

e[ω̂]θ = I + [ω̂]sin θ + [ω̂]2(1 − cos θ)

e[ω̂]θ = I + θ[ω̂] +
θ2

2!
[ω̂]2 +

θ3

3!
[ω̂]3 + ⋯

Given  and , what is ?ω̂ θ R ∈ SO(3)



Given , what is  and ?R ∈ SO(3) ω̂ θ
• First question: Is there a unique parametrization?

- No：
1.  and  give the same rotation
2. when ,  and  can be arbitrary

• When 2 does not happen, and if we also restrict 
, a unique parameterization exists:

- when , can be computed by 
,   

- when , they are the cases that  for 
rotations around x/y/z axis

(ω̂, θ) (−ω̂, − θ)
R = I θ = 0 ω̂

θ ∈ [0,π)
tr(R) ≠ − 1

θ = arccos
1
2

[tr(R) − 1] [ω̂] =
1

2 sin θ
(R − RT)

tr(R) = − 1 θ = π

31



Distance between Rotations
• How to measure the distance between rotations 

?
• A natural view is to measure the (minimal) effort to 

rotate the body at  pose to  pose:

(R1, R2)

R1 R2

32

∵ (R2RT
1 )R1 = R2 ∴ dist(R1, R2) = θ(R2RT

1 ) = arccos
1
2

[tr(R2RT
1 ) − 1]

X

Z Y

X

Z

Y

R1

R2

XZ

Y



Inspection from Learning Perspective
• When used in networks, one prominent issue is:

- Suppose that you are estimating  as a 3D vector

- To keep a unique parameterization, you assume 
that 

- Your current solution is 

-  is mapped to a neighborhood point in 
, but it is not in the neighborhood of the 

domain, hence gradient descent could not achieve 
it

θω̂

θ ∈ (0,π]

πω̂

(π − ϵ)(−ω̂)
SO(3)
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Summary of Axis-Angle

• Axis-Angle is an intuitive rotation representation

• By adding a constraint to the domain of , the 
parameterization can be unique at most points

• Can be converted to and from rotation matrices by 
exponential map and its inverse (when possible)

• Induced a distance between rotations which is a 
metric in  (independent of parameterization)

θ

SO(3)

34



Quaternion



 Mathematical Definition

• Recall the complex number 

• Quaternion is a more generalized complex number:
 
-  is the real part and  is the 

imaginary part
- Imaginary: 
- anti-commutative : 

a + bi

q = w + xi + yj + zk
w ⃗v = (x, y, z)

i2 = j2 = k2 = ijk = − 1

ij = k = − ji, jk = i = − kj, ki = j = − ik

36



Properties of General Quaternions 

• In vector-form, the product of two quaternions:
   For   and 

• Conjugate: 

• Norm: 

• Inverse: 

q1 = (w1, ⃗v 1) q2 = (w2, ⃗v 2)

q1q2 = (w1w2 − ⃗v T
1 ⃗v 2, w1 ⃗v 2 + w2 ⃗v 1 + ⃗v 1 × ⃗v 2)

q* = (w, − ⃗v )

∥q∥2 = w2 + ⃗v T ⃗v = qq* = q*q

q−1 :=
q*

∥q∥2

37



Unit Quaternion as Rotation

• A unit quaternion 1 can represent a rotation
- Four numbers plus one constraint  3 DoF

• Geometrically, the shell of a 4D sphere

𝒒 =
→
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Unit Quaternion as Rotation

• Rotate a vector  by quaternion :

1. Augment  to 

2. 

• Compose rotations by quaternion: 

- : first rotate by  and then by 

- Since , we 
conclude that composing rotations is as simple as 
multiplying quaternions!

⃗x q
⃗x x = (0, ⃗x )

x′ = qxq−1

(q2(q1xq*1 )q*2 ) q1 q2

(q2(q1xq*1 )q*2 ) = (q2q1)x(q*1 q*2 )
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Conversation between 
Quaternions and Angle-Axis

• Exponential coordinate  Quaternion:

 

Quaternion is very close to angle-axis representation!

• Exponential coordinate  Quaternion: 

,        

→
q = [cos(θ/2), sin(θ/2)ω̂]

←

θ = 2 arccos(w) ω̂ =
1

sin(θ/2)
⃗v θ ≠ 0

0 θ = 0

40



Conversation between 
Quaternion and Rotation Matrix

• Rotation  Quaternion 
                             
                  where  and     
                            

• Rotation  Quaternion
- Rotation  Angle-Axis  Quaternion

←
R(q) = E(q)G(q)T

E(q) = [− ⃗v , wI + [ ⃗v ]]
G(q) = [− ⃗v , wI − [ ⃗v ]]

→
→ →

41



Inspection from Learning Perspective

• Each rotation corresponds to two quaternions 
(“double-covering”)

• Need to normalize to unit length in networks. This 
normalization may cause big/small gradients in 
practice
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More about Quaternion

• Quaternion is computationally cheap:
- Internal representation of Physical Engine and 

Robot
- Pay attention to convention (w, x, y, z) or (x, y, z, 

w)?
- (w, x, y, z): SAPIEN, transforms3d, Eigen, blender, 

MuJoCo, V-Rep
- (x, y, z, w): ROS, PhysX, PyBullet

43



Summary of Quaternion

• Very useful and popular in practice

• 4D parameterization, compact and efficient to 
compute

• Good numerical properties in general

44



? means no singularity with single exceptions

Summary of 
Rotation Representations

45

Inverse? Composing?

Any local 
movement in 
SO(3) can be 

achieved by local 
movement in the 

domain?

Rotation 
Matrix ✔ ✔ N/A

Euler Angle Complicated Complicated No
Angle-axis ✔ Complicated ?

Skew-
symmetrical 

Matrix
✔ Complicated ?

Quaternion ✔ ✔ ✔



Resources

• A useful torch library that you can play with is “kornia’’

• Use with cautious to its numerical properties

• “ceres” is a C++ library that is quite useful
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