

Machine Learning meets Geometry

L5: 3D Transformation

Hao Su

3D Spatial Relationships

• How to represent the relationships between objects?

² Wang et al., "**DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion**", *CVPR 2019*

3D Spatial Relationships

• How to represent the relationships between objects?

Prereq: Topology

• Topology: Structural Properties of a Manifold

• Two surfaces M and N are *topologically equivalent* if there is a **differentiable bijection** between M and N

Prereq: Topology

• More examples:

Rotation and *SO*(*n*)

Orientation

- We use "rotation" to represent the relative orientation between two frames
- For example,
	- Space Frame: $\{s\} = {\hat{x}_s, \hat{y}_s, \hat{z}_s\}$ ̂ ̂ ̂
	- Body Frame: $\{b\} = {\{\hat{x}_b, \hat{y}_b, \hat{z}_b\}}$ ̂ ̂ ̂
	- R_{sb} rotates the frame of the space to the frame of the body after the origins are aligned

Rotation in \mathbb{R}^2

Rotation in \mathbb{R}^3

3 Degree of Freedoms

The Set of Rotations

- $SO(n) = \{R \in \mathbb{R}^{n \times n} : \det(R) = 1, RR^T = I\}$
- : "Special Orthogonal Group" *SO*(*n*)
- "Group": a group under the *matrix multiplication*
- \bullet "Orthogonal": $RR^T = I$
- "Special": $\det(R) = 1$
- *SO*(2): 2D rotations, 1 DoF
- *SO*(3): 3D rotations, 3 DoF

Topology of *SO*(*n*)

• The topology of *SO*(2) is the same as a circle

Topology of *SO*(*n*)

• Circles do not have the same topology as $(-1,1)^n$ \implies No differentiable bijections between $SO(2)$ and $(-1,1)^n$

• The topology of $SO(3)$ is also different from $(-1,1)^n$

Why do we care about the topology?

• An ideal parameterization $f(\theta): U \mapsto SO(2)$ to use in networks:

1. The domain is $(-l, l)^n$ (as network output)

- An ideal parameterization $f(\theta): U \mapsto SO(2)$ to use in networks:
	- 1. The domain is $(-l, l)^n$
	- 2. f is a differentiable *bijection*

- If input data points to network are \blacksquare \blacks to be far after convergence, the network (a continuous function) will make awful predictions between the two data points!
	- Need special network design to overcome the issue (will discuss in future lectures)

- An ideal parameterization $f(\theta): U \mapsto SO(2)$ to use in networks:
	- 1. The domain is $(-l, l)^n$
	- 2. f is a differentiable *bijection* 3. $\forall \theta \, \forall y \in \mathbf{T}_{f(\theta)}$ with $\|y\| = 1$, there should $\exists x \in \mathbf{T}_{\theta}$, such that $y = \mathrm{Df}[x]$ and $f(c + \epsilon) > ||x|| > c - \epsilon$ for some constant c and small ϵ (all movement in $SO(n)$ should be achieved by movement in the domain with a near constant speed)

- An ideal parameterization $f(\theta): U \mapsto SO(2)$ to use in networks:
	- 1. The domain is $(-l, l)^n$
	- 2. f is a differentiable *bijection* 3. $\forall \theta \, \forall y \in \mathbf{T}_{f(\theta)}$ with $\|y\| = 1$, there should $\exists x \in \mathbf{T}_{\theta}$, such that $y = \mathrm{Df}[x]$ and $f(c + \epsilon) > ||x|| > c - \epsilon$ for some constant c and small ϵ
- However, 1 and 2 are contradictory by topology!
- For 3, it also creates troubles for the $SO(3)$ case.

Euler Angles

Euler Angle is Very Intuitive

Euler Angle to Rotation Matrix

• Rotation about principal axis is represented as:

$$
R_x(\alpha) := \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}
$$

$$
R_y(\beta) := \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}
$$

$$
R_z(\gamma) := \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$

 \bullet $R = R_z(\alpha) R_y(\beta) R_x(\gamma)$ for arbitrary rotation

• Euler Angle is **not unique** for some rotations. For example, $R_{z}(45^{\circ})R_{y}(90^{\circ})R_{x}(45^{\circ}) = R_{z}(90^{\circ})R_{y}(90^{\circ})R_{x}(90^{\circ})$

$$
= \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}
$$

- Gimbal lock:
	- $\mathrm{D} f$ is rank-deficient at some θ
	- $\bullet \Rightarrow$ some movement in $\mathbf{T}_{f(\theta)}(SO(3))$ cannot be achieved

• For example: When $\beta = \pi/2$,

$$
R = R_z(\alpha)R_y(\pi/2)R_x(\gamma)
$$

=
$$
\begin{bmatrix} 0 & 0 & 1 \\ \sin(\alpha + \gamma) & \cos(\alpha + \gamma) & 0 \\ -\cos(\alpha + \gamma) & \sin(\alpha + \gamma) & 0 \end{bmatrix}
$$

since changing α and γ has the same effects, a degree of freedom disappears!

Summary

- Euler angle can parameterize every rotation and has good interpretability
- It is not a unique representation at some points
- There are some points where not every change in the target space (rotations) can be realized by a change in the source space (Euler angles)

Axis-Angle

Euler Theorem

- Any rotation in $SO(3)$ is equivalent to rotation about a fixed axis $\omega \in \mathbb{R}^3$ through a positive angle
- $\hat{\omega}$: unit vector of rotation axis ($\|\hat{\omega}\|=1$)
- \cdot θ : angle of rotation
- \cdot $R \in SO(3) := Rot(\hat{\omega}, \theta)$

Skew-Symmetric Matrix

- *A* is skew-symmetric $A = -A^T$
- Skew-symmetric matrix operator:

$$
\omega = \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix}, \ [\omega] := \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}
$$

- Cross product can be a linear transformation - $a \times b = [a]b$
- **Lie Algebra** of 3D rotation: - $so(3) := \{ S \in \mathbb{R}^{3 \times 3} : S^T = -S \}$

• Consider a point q . At time $t = 0$, the position is q_0

- Rotate q with unit angular velocity around axis $\hat{\omega}$, i.e., ̂
	- $\cdot \, v = \, \hat{\omega}$ $\dot{v} = \hat{\omega} \times r$
 $\dot{a}(t) = \hat{\omega} \times r$
	- $\dot{q}(t) = \hat{\omega} \times q(t) = [\hat{\omega}]q(t)$

$$
\dot{q}(t) = \hat{\omega} \times q(t) = [\hat{\omega}]q(t)
$$

\n
$$
\Rightarrow q(t) = e^{[\hat{\omega}]t}q_0 \text{ (solution of the ODE)}
$$

$$
\|\hat{\omega}\| = 1
$$

\n \Rightarrow the swept angle $\theta = \|\hat{\omega}t\| = t$
\n $\Rightarrow q(\theta) = e^{[\hat{\omega}]\theta}q_0$
\n $\Rightarrow Rot(\hat{\omega}, \theta) = e^{[\hat{\omega}]\theta} = e^{[\hat{\omega}\theta]}$ (exponential map)

• $\vec{\omega} = \hat{\omega}\theta$ is also called rotation vector or exponential **coordinate**

- Definition of Matrix Exponential: $e^{[\hat{\omega}]\theta} = I + \theta[\hat{\omega}] +$ θ^2 2! $[\hat{\omega}]^2 +$ *θ*3 3! $\left[\hat{\omega}\right]^3 + \cdots$
- Sum of infinite series? **Rodrigues Formula**
	- Can prove that $[\hat{\omega}]^3 = -[\hat{\omega}]$
	- Then, use Taylor expansion of **sin** and **cos**
	- $e^{[\hat{\omega}]\theta} = I + [\hat{\omega}] \sin \theta + [\hat{\omega}]^2 (1 \cos \theta)$

Given $R \in SO(3)$, what is $\hat{\omega}$ and θ ?

- First question: Is there a **unique** parametrization?
	- No:

1. $(\hat{\omega}, \theta)$ and $(-\hat{\omega}, -\theta)$ give the same rotation 2. when $R = I, \theta = 0$ and $\hat{\omega}$ can be arbitrary ̂ ̂ ̂

• When 2 does not happen, and if we also restrict $\theta \in [0,\!\pi)$, a unique parameterization exists:

$$
\begin{aligned}\n\text{When } \text{tr}(R) &= -1, \text{ can be computed by} \\
\theta &= \arccos \frac{1}{2} [\text{tr}(R) - 1], \quad [\hat{\omega}] = \frac{1}{2 \sin \theta} (R - R^T)\n\end{aligned}
$$

- when $\text{tr}(R) = -1$, they are the cases that $\theta = \pi$ for rotations around x/y/z axis

Distance between Rotations

- How to measure the distance between rotations (R_1, R_2) ?
- A natural view is to measure the (minimal) effort to rotate the body at R_1 pose to R_2 pose:

∴ $(R_2 R_1^T)R_1 = R_2$ ∴ dist $(R_1, R_2) = \theta(R_2 R_1^T) = \arccos$ 1 2 $[tr(R_2 R_1^T) - 1]$

- When used in networks, one prominent issue is:
	- Suppose that you are estimating $\theta \hat{\omega}$ as a 3D vector ̂
	- To keep a unique parameterization, you assume that $\theta \in (0,\!\pi]$
	- Your current solution is *πω* ̂
	- $(\pi \epsilon)(-\hat{\omega})$ is mapped to a neighborhood point in $SO(3)$, but it is not in the neighborhood of the domain, hence gradient descent could not achieve it

Summary of Axis-Angle

- Axis-Angle is an intuitive rotation representation
- By adding a constraint to the domain of θ , the parameterization can be unique at most points
- Can be converted to and from rotation matrices by exponential map and its inverse (when possible)
- Induced a distance between rotations which is a metric in $SO(3)$ (independent of parameterization)

Quaternion

Mathematical Definition

- Recall the complex number $a + b\mathbf{i}$
- Quaternion is a more generalized complex number: $q = w + x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$
	- *w* is the real part and $\vec{v} = (x, y, z)$ is the imaginary part
	- Imaginary: $i^2 = j^2 = k^2 = ijk = -1$
	- anti-commutative : i **j** = **k** = − **ji**, **jk** = **i** = − **kj**, **ki** = **j** = − **ik**

Properties of General Quaternions

• In vector-form, the product of two quaternions: For $q_1 = (w_1, \vec{v}_1)$ and $q_2 = (w_2, \vec{v}_2)$

$$
q_1 q_2 = (w_1 w_2 - \overrightarrow{v}_1^T \overrightarrow{v}_2, w_1 \overrightarrow{v}_2 + w_2 \overrightarrow{v}_1 + \overrightarrow{v}_1 \times \overrightarrow{v}_2)
$$

- Conjugate: $q^* = (w, -\overrightarrow{v})$
- Norm: $||q||^2 = w^2 + \overrightarrow{v}^T \overrightarrow{v} = qq^* = q^*q$ **Solution** α *

• Inverse:
$$
q^{-1} := \frac{q}{\|q\|^2}
$$

Unit Quaternion as Rotation

- $\boldsymbol{\cdot}$ A **unit** quaternion $\|\boldsymbol{q}\|=1$ can represent a rotation
	- Four numbers plus one constraint \rightarrow 3 DoF
- Geometrically, the shell of a 4D sphere

Unit Quaternion as Rotation

- Rotate a vector \overrightarrow{x} by quaternion q :
	- 1. Augment \overrightarrow{x} to $x = (0, \overrightarrow{x})$

$$
2. x' = qxq^{-1}
$$

- Compose rotations by quaternion:
	- $(q_2(q_1xq_1^*)q_2^*)$: first rotate by q_1 and then by q_2
	- Since $(q_2(q_1 xq_1^*)q_2^*) = (q_2 q_1)x(q_1^*q_2^*)$, we conclude that composing rotations is as simple as multiplying quaternions!

Conversation between Quaternions and Angle-Axis

• Exponential coordinate \rightarrow Quaternion:

 $q = [\cos(\theta/2), \sin(\theta/2)\hat{\omega}]$

Quaternion is very close to angle-axis representation!

• Exponential coordinate \leftarrow Quaternion:

$$
\theta = 2 \arccos(w), \qquad \hat{\omega} = \begin{cases} \frac{1}{\sin(\theta/2)} \vec{v} & \theta \neq 0 \\ 0 & \theta = 0 \end{cases}
$$

Conversation between Quaternion and Rotation Matrix

• Rotation ← Quaternion

$$
R(q) = E(q)G(q)^{T}
$$

where $E(q) = [-\overrightarrow{v}, wI + [\overrightarrow{v}]]$ and

$$
G(q) = [-\overrightarrow{v}, wI - [\overrightarrow{v}]]
$$

- Rotation \rightarrow Quaternion
	- Rotation \rightarrow Angle-Axis \rightarrow Quaternion

- Each rotation corresponds to two quaternions ("double-covering")
- Need to normalize to unit length in networks. This normalization may cause big/small gradients in practice

More about Quaternion

- Quaternion is computationally cheap:
	- Internal representation of Physical Engine and Robot
	- Pay attention to convention (w, x, y, z) or (x, y, z, w)?
	- (w, x, y, z): SAPIEN, transforms3d, Eigen, blender, MuJoCo, V-Rep
	- (x, y, z, w): ROS, PhysX, PyBullet

Summary of Quaternion

- Very useful and popular in practice
- 4D parameterization, compact and efficient to compute
- Good numerical properties in general

Summary of Rotation Representations

? means no singularity with single exceptions

- A useful torch library that you can play with is "kornia''
- Use with cautious to its numerical properties
- "ceres" is a C++ library that is quite useful