
L4: Mesh and Point Cloud

Hao Su

Machine Learning meets Geometry



Shape Representation:  
Origin- and Application-Dependent
• Acquired real-world objects

• Modeling “by hand”

• Procedural modeling

• …
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Rasterized form 
(regular grids) 

Geometric form
(irregular)

Point Cloud

Mesh

Implicit Shape

F(x) = 0

Volumetric

Multi-view

Depth Map

Other than parametric representations, we also study 
these in this course:
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Agenda
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Point CloudMesh



Polygonal Meshes
• Representation
• Storage
• Curvature Computation



Polygonal Meshes
• Piece-wise Linear Surface Representation
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Triangle Mesh
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http://graphics.stanford.edu/data/3Dscanrep/stanford-bunny-cebal-ssh.jpg
http://www.stat.washington.edu/wxs/images/BUNMID.gif



Triangle Mesh
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Plus manifold conditions

V = {v1, v2, …, vn} ⊂ ℝ3

E = {e1, e2, …, ek} ⊆ V × V
F = {f1, f2, …, fm} ⊆ V × V × V



Bad Surfaces
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http://igl.ethz.ch/projects/parameterization/rangemap-param/rangemap-param.pdf



Nonmanifold Edge
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http://blog.mixamo.com/wp-content/uploads/2011/01/nonmanifold.jpg



Manifold Mesh
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http://www.cs.mtu.edu/~shene/COURSES/cs3621/SLIDES/Mesh.pdf

1.Each edge is incident to one or two faces 

2.Faces incident to a vertex form a closed or open fan

This is not a fan:



Manifold Mesh
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http://www.cs.mtu.edu/~shene/COURSES/cs3621/SLIDES/Mesh.pdf

Assume meshes are manifold
(for now)

1.Each edge is incident to one or two faces 

2.Faces incident to a vertex form a closed or open fan
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http://www.pmp-book.org/download/slides/Representations.pdf

“Triangle soup”



Bad Meshes
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http://www.sciencedirect.com/science/article/pii/S0168874X06000795

Nonuniform
areas and angles



Why is Meshing an Issue?
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How do you interpret 
one value per vertex?

http://www.sciencedirect.com/science/article/pii/S0168874X06000795



Assume Storing Scalar Functions 
on Surface
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http://www.ieeta.pt/polymeco/Screenshots/PolyMeCo_OneView.jpg

Map points to real numbers



Approximation Properties
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Ex: Taylor’s 
Theorem

 functions defined at vertices 
     (e.g., Gaussian curvature)
f :



Techniques to Improve Mesh Quality

• Cleaning

• Repairing

• Remeshing

• …
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Polygonal Meshes
• Representation
• Storage
• Curvature Computation



Data Structures for Surfaces

• What should be stored?
- Geometry: 3D coordinates
- Topology
- Attributes
‣ Normal, color, texture 

coordinates
‣ Per vertex, face, edge

20



Simple Data Structures: Triangle List

• STL format (used in CAD)
• Storage

- Face: 3 positions
• No connectivity information
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Triangles

0 x0 y0 z0

1 x1 x1 z1

2 x2 y2 z2

3 x3 y3 z3

4 x4 y4 z4

5 x5 y5 z5

6 x6 y6 z6

... ... ... ...



Simple Data Structures: Indexed Face Set

• Used in formats
- OBJ, OFF, WRL

• Storage
- Vertex: position
- Face: vertex indices
- Convention is to save 

vertices in counter-
clockwise order for 
normal computation

Vertices

v0 x0 y0 z0

v1 x1 x1 z1

v2 x2 y2 z2

v3 x3 y3 z3

v4 x4 y4 z4

v5 x5 y5 z5

v6 x6 y6 z6

... ... ... ...

Triangles

t0 v0 v1 v2

t1 v0 v1 v3

t2 v2 v4 v3

t3 v5 v2 v6

... ... ... ...
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Right-Hand Rule
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http://viz.aset.psu.edu/gho/sem_notes/3d_fundamentals/html/3d_coordinates.html
http://mathinsight.org/stokes_theorem_orientation



Normal Computation
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Orientability
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orientable non-orientable

http://blog.lightformshop.com/the-kepler-collection-nemo-math-inspired-wonder/mobius-strip-sphere-2/



Summary of Polygonal Meshes

• Polygonal meshes are piece-wise linear 
approximation of smooth surfaces

• Good triangulation is important (manifold, equi-length) 

• Vertices, edges, and faces are basic elements

• While real-data 3D are often point clouds, meshes are 
quite often used to visualize 3D and generate ground 
truth for machine learning algorithms
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Polygonal Meshes
• Representation
• Storage
• Curvature Computation



Challenge on Meshes
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http://upload.wikimedia.org/wikipedia/commons/f/fb/Dolphin_triangle_mesh.png

Curvature is a 
second-order derivative, 

but triangles are flat. 



29

Assume a local  at a small triangle
Assume that ’s are roughly parallel

Assume that , i.e., 
(We pick a pair of orthonormal vectors in  to build a local frame)

f : U → ℝ3

Tpi

Df [u
v] = u ⃗ξ u + v ⃗ξ v Df = [ ⃗ξ u, ⃗ξ v]

Tpi

e0

e2

e1

p1

p2

p0

ξu

ξv

ξu

ξv

ξu

ξv

Rusinkiewicz’s Method
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Recall shape operator: . 

If we have , we can compute principal curvatures!
How to estimate ?

DN = Df ⋅ S
∵ Df = [ ⃗ξ u, ⃗ξ v], ∴ S = DfTDN

S
S

Rusinkiewicz’s Method

e0

e2

e1

p1

p2

p0

ξu

ξv

ξu

ξv

ξu

ξv
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e0

e2

e1

p1

p2

p0

ξu

ξv

ξu

ξv

ξu

ξv

 DfT (DN [u
v]) ≈ DfTΔ ⃗n ⟹ S [u

v] ≈ DfTΔ ⃗n

∵ Df [u
v] = Y ∈ T(ℝ3) and Df = [ ⃗ξ u, ⃗ξ v] ∴ [u

v] = DfTY

∴ S[Df ]TY ≈ [Df ]TΔ ⃗n



32

 DfT (DN [u
v]) ≈ DfTΔ ⃗n ⟹ S [u

v] ≈ DfTΔ ⃗n

e0

e2

e1

p1

p2

p0

ξu

ξv

ξu

ξv

ξu

ξv

S[Df ]Te0 = DfT( ⃗n 2 − ⃗n 1),
S[Df ]Te1 = DfT( ⃗n 0 − ⃗n 2),
S[Df ]Te2 = DfT( ⃗n 1 − ⃗n 0),

So we can solve  by 
least square(6 equations and
 4 unknowns)

S ∈ ℝ2×2

∵ Df [u
v] = Y ∈ T(ℝ3) and Df = [ ⃗ξ u, ⃗ξ v] ∴ [u

v] = DfTY

∴ S[Df ]TY ≈ [Df ]TΔ ⃗n



Summary of Mesh Curvature Estimation

• Rusinkiewicz’s method is an effective approach for 
face curvature estimation
- Szymon Rusinkiewicz, “Estimating Curvatures and Their 

Derivatives on Triangle Meshes”, 3DPVT, 2004

• Good robustness to moderate amount of noise and 
free of degenerate configurations

• Can be used to compute curvatures for point cloud as 
well
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Point Cloud
• Representation
• Sampling Points on Surfaces
• Normal Computation

Ack: Sid Chaudhuri



Acquiring Point Clouds
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• From the real world
• 3D scanning

• Data is “striped”
• Need multiple views to 

compensate occlusion

• Many techniques
• Laser (LIDAR, e.g., StreetView)
• Infrared (e.g., Kinect)
• Stereo (e.g., Bundler)

• Many challenges: resolution, 
occlusion, noise, registration



Acquisition Challenges

36 htp://grail.cs.washington.edu/

Occlusion   
Interiors not  
captured

→

Some data was 
not properly 

registered with 
the rest

Noise Poor detail reproduction→ Low resolution further obscures detail



• From existing virtual shapes

• Why would we want to do this?

Acquiring Point Clouds
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Light-weight Shape Representation
Point cloud: 
• Simple to understand
• Compact to store
• Generally easy to build algorithms
Yet already carries rich information!

38

N = 125 N = 250 N = 500 N = 1000



Point Cloud
• Representation
• Sampling Points on Surfaces
• Normal Computation

Ack: Sid Chaudhuri



Application-based Sampling

• For storage or analysis purposes (e.g., shape 
retrieval, signature extraction), 
- the objective is often to preserve surface 

information as much as possible

• For learning data generation purposes (e.g., 
sim2real),
- the objective is often to minimize virtual-real domain 

gap

40



Application-based Sampling

• For storage or analysis purposes (e.g., shape 
retrieval, signature extraction), 
- the objective is often to preserve surface 

information as much as possible

• For learning data generation purposes (e.g., 
sim2real),
- the objective is often to minimize virtual-real domain 

gap
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Naive Strategy: Uniform Sampling

• Independent identically distributed (i.i.d.) samples by 
surface area:

• Usually the easiest to implement (as in your HW0)
• Issue: Irregularly spaced sampling
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Farthest Point Sampling

• Goal: Sampled points are far away from each other

• NP-hard problem

• What is a greedy approximation method?
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Iterative Furthest Point Sampling
• Step 1: Over sample the shape by any fast method 

(e.g., uniformly sample N=10,000 i.i.d. samples)
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Iterative Furthest Point Sampling
• Step 2: Iteratively select K points 
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 is the initial big set of points

add a random point from  to 

for i=1 to K
    find a point  with the largest distance to 
    add  to 

U
S = {}

U S

u ∈ U S
u S



Issues Relevant to Speed
• Theoretically, naive implementation gives , but 

how to improve from  is an open question

• Implementation can cause large speed difference
- As this is a serial algorithm in K, engineers optimize 

the efficiency in N (computing point-set distance)
- CPU: Suggest using vectorization (e.g., numpy, 

scipy.spatial.distance.cdist)
- GPU: By using shared memory, the complexity can 

be reduced to , where M is 
the number of threads (M=512 in practice for 
modern GPU).

𝒪(KN)
𝒪(KN)

𝒪(K(N/M + log M))

46Read by yourself!



Implementation Tricks
• References:

- https://github.com/maxjaritz/mvpnet/blob/master/
mvpnet/ops/cuda/fps_kernel.cu

- https://github.com/erikwijmans/Pointnet2_PyTorch/
blob/master/pointnet2_ops_lib/pointnet2_ops/_ext-
src/src/sampling_gpu.cu

• By courtesy of Jiayuan Gu, we share a GPU version 
code with you (through Piazza)

47Read by yourself!

https://github.com/maxjaritz/mvpnet/blob/master/mvpnet/ops/cuda/fps_kernel.cu
https://github.com/maxjaritz/mvpnet/blob/master/mvpnet/ops/cuda/fps_kernel.cu
https://github.com/erikwijmans/Pointnet2_PyTorch/blob/master/pointnet2_ops_lib/pointnet2_ops/_ext-src/src/sampling_gpu.cu
https://github.com/erikwijmans/Pointnet2_PyTorch/blob/master/pointnet2_ops_lib/pointnet2_ops/_ext-src/src/sampling_gpu.cu
https://github.com/erikwijmans/Pointnet2_PyTorch/blob/master/pointnet2_ops_lib/pointnet2_ops/_ext-src/src/sampling_gpu.cu


An Implementation 
in Numpy

def fps_downsample(points, number_of_points_to_sample):
    selected_points = np.zeros((number_of_points_to_sample, 3))
    dist = np.ones(points.shape[0]) * np.inf # distance to the selected set
    for i in range(number_of_points_to_sample):
      # pick the point with max dist
      idx = np.argmax(dist)
      selected_points[i] = points[idx]
      dist_ = ((points - selected_points[i]) ** 2).sum(-1)
      dist = np.minimum(dist, dist_)

   return selected_points

48Read by yourself!



Voxel Downsampling
• Uses a regular voxel grid to downsample, taking one 

point per grid
• Allows higher parallelization level 
• Generates regularly spaced sampling (with noticeable 

artifacts)

49 Credit to: Open3D



Issues Relevant to Speed
• Need to map each point to a bin. Often implemented 

as adding elements into a hash table 

•  (assuming that the inserting into hash table 
takes O(1))

• On GPUs, parallelization reduces complexity of
- Mapping each point to an integer value
- Assign each value to an index so that the same 

value shares the same index
- Aggregate indexes and form the output (called 

scattering in CUDA)

𝒪(N)

50Read by yourself!



A Dictionary-based Implementation 
in Numpy

def voxel_downsample(points: np.ndarray, voxel_size: float):
    """Voxel downsample (first).

    Args:
        points: [N, 3]
        voxel_size: scalar
    
    Returns:
        np.ndarray: [M, 3]
    """
    points_downsampled = dict()  # point in each voxel cell
    points_voxel_coords = (points / voxel_size).astype(int)  # discretize to voxel 
coordinate
    for point_idx, voxel_coord in enumerate(points_voxel_coords):
        key = tuple(voxel_coord.tolist())  # voxel coordinate
        if key not in points_downsampled:
            # assign the point to a voxel cell
            points_downsampled[key] = points[point_idx]
    points_downsampled = np.array(list(points_downsampled.values()))
    return points_downsampled

51Read by yourself!



A Unique-based Implementation 
in Torch

def voxel_downsample_torch(points: torch.Tensor, voxel_size: float):
    """Voxel downsample (average).

    Args:
        points: [N, 3]
        voxel_size: scalar
    
    Returns:
        torch.Tensor: [M, 3]
    """
    points = torch.as_tensor(points, dtype=torch.float32)
    points_voxel_coords = (points / voxel_size).long()  # discretize

    # Generate the assignment between points and voxel cells
    unique_voxel_coords, points_voxel_indices, count_voxel_coords = torch.unique(
        points_voxel_coords, return_inverse=True, return_counts=True, dim=0)

    M = unique_voxel_coords.size(0)  # the number of voxel cells
    points_downsampled = points.new_zeros([M, 3])
    points_downsampled.scatter_add_(
        dim=0, 
        index=points_voxel_indices.unsqueeze(-1).expand(-1, 3), 
        src=points)
    points_downsampled = points_downsampled / count_voxel_coords.unsqueeze(-1)
    return points_downsampled

52Read by yourself!



Application-based Sampling

• For storage or analysis purposes (e.g., shape 
retrieval, signature extraction), 
- the objective is often to preserve surface 

information as much as possible

• For learning data generation purposes (e.g., 
sim2real),
- the objective is often to minimize virtual-real domain 

gap
- a good research topic (e.g., GAN? Adversarial 

training? Differentiable sampling?)
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Point Cloud
• Representation
• Sampling Points on Surfaces
• Normal Computation

Ack: Sid Chaudhuri



Estimating Normals

• Plane-fitting: find the plane that best fits the 
neighborhood of a point of interest
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Least-square Formulation

• Assume the plane equation is: 
    with    

• Plane-fitting solves the least square problem:

where  is the neighborhood of a point  
that you query the normal 

wT(x − c) = 0 ∥w∥ = 1

minimizew,c ∑
i

∥wT(xi − c)∥2
2

subject to ∥w∥2 = 1

{xi} x
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• Doing Lagrangian multiplier and the solution is:
- Let  and ,

- : the smallest eigenvector of 
-  

•  also corresponds to the third principal component of 
 (yet another usage of PCA)

- Where are the first and second principal 
components?

M = ∑
i

(xi − x̄)(xi − x̄)T x̄ =
1
n ∑

i

xi

w M
c = wT x̄

w
M
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Summary of Normal Computation

• The normal of a point cloud can be computed through 
PCA over a local neighborhood

• Remark:
- The choice of neighborhood size is important
- When outlier points exist, RANSAC can improve 

quality
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