

Machine Learning meets Geometry

L3: Surfaces (II)

Hao Su

Warm Up (Review)

Differential Map

Directional Normal Curvature

Note: κ_n is not the curvature κ of γ

Directional Normal Curvature

Note: κ_n is not the curvature κ of γ

Principal Curvatures

Maximal curvature: $\kappa_1 = \kappa_{\max} = \max_{\varphi} \kappa_n(\varphi)$ Minimal curvature: $\kappa_2 = \kappa_{\min} = \min_{\varphi} \kappa_n(\varphi)$

Principal Directions

Euler's Theorem: Planes of principal curvature are orthogonal and independent of parameterization.

$$\kappa_n(\varphi) = \kappa_1 \cos^2 \varphi + \kappa_2 \sin^2 \varphi, \qquad \varphi = \text{angle with } t_1$$

- Shape Operator
- First Fundamental Form
- Fundamental Theorem of Surfaces
- Gaussian and Mean Curvature

- Note that
 - $\forall X, DN_pX$ is in the tangent plane
 - $\forall X, Df_p X$ is also in the tangent plane
- So the column space of $DN_p \in \mathbb{R}^{3 \times 2}$ and $Df_p \in \mathbb{R}^{3 \times 2}$ are the same
- In other words,

- Note that
 - $\forall X, DN_pX$ is in the tangent plane
 - $\forall X, Df_p X$ is also in the tangent plane
- So the column space of $DN_p \in \mathbb{R}^{3 \times 2}$ and $Df_p \in \mathbb{R}^{3 \times 2}$ are the same
- In other words, $\exists S \in \mathbb{R}^{2 \times 2}$ such that $DN_p = Df_pS$

- Note that
 - $\forall X, DN_pX$ is in the tangent plane
 - $\forall X, Df_pX$ is also in the tangent plane

- So the column space of $DN_p \in \mathbb{R}^{3 \times 2}$ is a subspace of the column space of $Df_p \in \mathbb{R}^{3 \times 2}$
- In other words, $\exists S \in \mathbb{R}^{2 \times 2}$ such that $DN_p = Df_pS$
- ${\cal S}$ is called the ${\rm shape}\ {\rm operator}$

A Linear Map That Tells Us Normal Change

$$DN_p = Df_pS,$$

$$\therefore \quad \forall X \in \mathbf{T}_p(\mathbb{R}^2), \ [DN_p]X = [Df_p]SX$$

- Interpretation:
 - When *p* moves along *X*, we want to know the direction of normal change $\overrightarrow{d} \in \mathbb{R}^3$

A Linear Map That Tells Us Normal Change

$$DN_p = Df_p S,$$

$$\therefore \quad \forall X \in \mathbf{T}_p(\mathbb{R}^2), \ [DN_p]X = [Df_p]SX$$

- Interpretation:
 - When *p* moves along *X*, we want to know the direction of normal change $\overrightarrow{d} \in \mathbb{R}^3$
 - \overrightarrow{d} is just along the curve if p moves along SX

A Linear Map That Tells Us Normal Change

$$DN_p = Df_p S,$$

$$\therefore \quad \forall X \in \mathbf{T}_p(\mathbb{R}^2), \ [DN_p]X = [Df_p]SX$$

- Interpretation:
 - When p moves along X, we want to know the direction of normal change $\overrightarrow{d} \in \mathbb{R}^3$
 - \overrightarrow{d} is just along the curve if p moves along SX
- This *linear map* S predicts the normal change when p moves along any direction!

Computation of Principal Directions

• Principal directions are the *eigenvectors* of *S*

• Principal curvatures are the *eigenvalues* of *S*

 Note: S is not a symmetric matrix! Hence, eigenvectors are not orthogonal in R²; only orthogonal when mapped to R³

Example

Consider a nonstandard parameterization of the cylinder (sheared along *z*): $\begin{bmatrix} -\sin(u) & 0 \end{bmatrix}$

$$f(u, v) := [\cos(u), \sin(u), u + v]^{T} \qquad Df = \begin{bmatrix} \cos(u) & 0 \\ 1 & 1 \end{bmatrix}$$

$$N = \begin{bmatrix} \cos(u) \\ \sin(u) \\ 0 \end{bmatrix} \qquad DN = \begin{bmatrix} -\sin(u) & 0 \\ \cos(u) & 0 \\ 0 & 0 \end{bmatrix} \qquad Df(X_{2}) \qquad Df(X_{1}) \qquad Df(X_$$

Summary of Shape Operator

• A linear map between movement of point and movement of normal change

• The eigen-decomposition gives the principal curvature direction and values

First Fundamental Form

First Claim

Curvature completely determines *local* surface geometry.

Does Curvature Uniquely Determine Global Geometry?

Does Curvature Uniquely Determine Global Geometry?

However,

 $\exists f \text{ and } f^* \text{ such that:}$

(principal) curvature value and directions are the same for any pair $(f(p),f^*(p)), \, \forall p \in U$

Does Curvature Uniquely Determine Global Geometry?

However,

Curvature is Insufficient to Determine Surface Globally

Other than measuring how the surface bends, we should also measure **length** and **angle!**

Local Isometric Surfaces

We wrap the plane to become a cylinder without any distortion. That means, curve length can be preserved under the change of shape.

How can we quantify such invariance?

First Fundamental Form

• Defined as the inner product in $\mathbf{T}_p(\mathbb{R}^3)$:

$$\mathbf{I}_{p}(X, Y) = \langle Df_{p}X, Df_{p}Y \rangle$$
$$\Rightarrow \mathbf{I}_{p}(X, Y) = X^{T}(Df_{p}^{T}Df_{p})Y$$

- I: First fundament form, given p, we obtain a bilinear function
- \mathbf{I}_p is dependent on both p and f

Arc-length by I(X, Y)

<u>c</u>t

• Suppose a point $p \in U$ is moving with velocity X(t)

$$\gamma(t) = f(p(t)) = f(p_0 + \int_0^t X(t)dt)$$

$$\Rightarrow \chi'(t) = Df [Y(t)]$$

 $\Rightarrow \gamma'(t) = Df_{p(t)}[X(t)]$

• So:

$$\begin{split} s(t) &= \int_0^t \|\gamma'(t)\| dt = \int_0^t \sqrt{\langle Df_{p(t)}X(t), Df_{p(t)}X(t) \rangle} dt \\ &= \int_0^t \sqrt{\mathbf{I}_{p(t)}(X(t), X(t))} dt \end{split}$$

Arc-length by I(X, Y)

$$s(t) = \int_0^t \sqrt{\mathbf{I}_{p(t)}(X(t), X(t))} dt$$

With I, we have completely determined curve length within the surface without referring to f

Local Isometric Surfaces

For two surfaces M and M^* ,

- If there exists parameterizations f(U) = M and $f^{\ast}(U) = M^{\ast}$
- such that $\mathbf{I}_p = \mathbf{I}_p^*, \, \forall p \in U$
- Then the two surfaces are locally isometric

Preserve length between corresponding curves!

Local Isometric Surfaces

Verify by yourself:

$$f(u, v) = [u, v, 0]^T, \ f^*(u, v) = [\cos u, \sin u, v]^T$$

on $U = \{(u, v) : u \in (0, 2\pi), v \in (0, 1)\}$

Shape Classification by Isometry

Geodesic Distances

Distance Distribution Descriptor

 Compute distribution of distances for point pairs randomly picked on the surface

Angle of Curves by I(X, Y)

• Given two vectors (e.g., maximal principal direction) $Df_p[Y] \in \mathbf{T}_{f_p}(\mathbb{R}^3)$

• The angle φ between the vectors is:

$$\cos \varphi = \langle \frac{Df_p X}{\|Df_p X\|}, \frac{Df_p Y}{\|Df_p Y\|} \rangle = \frac{\mathbf{I}(X, Y)}{\sqrt{\mathbf{I}(X, X)}\sqrt{\mathbf{I}(Y, Y)}}$$

Angle of Curves by I(X, Y)

$$\cos \varphi = \frac{\mathbf{I}(X, Y)}{\sqrt{\mathbf{I}(X, X)}\sqrt{\mathbf{I}(Y, Y)}}$$

With I, we have completely determined angles within the surface without referring to f

Summary of First Fundamental Form

• Is a bilinear function over movement directions (velocities) in the tangent space of $\mathbf{T}_p(\mathbb{R}^2)$

- Induced by the inner product in the tangent space at surface $\operatorname{point} f(p)$

• Completely determines curve lengths and angles within the surface

Fundamental Theorem of Surfaces

First and Second Fundamental Forms

- First fundamental form (angle and length): $I(X, Y) = \langle Df_p X, Df_p Y \rangle$
- Second fundamental form (bending): $\mathbf{II}(X, Y) = \langle DN_p X, Df_p Y \rangle$

• Recall the definition of normal curvature:

$$\kappa_n(X) := \frac{\langle DN_p X, Df_p X \rangle}{\langle Df_p X, Df_p X \rangle} = \frac{\mathbf{II}(\mathbf{X}, \mathbf{X})}{\mathbf{I}(\mathbf{X}, \mathbf{X})}$$

Uniqueness Result

Theorem:

A smooth surface is determined up to rigid motion by its first and second fundamental forms.

Note: compatible first and second fundamental forms have to satisfy the Gauss-Codazzi condition (just FYI)

Gaussian and Mean Curvature

Gaussian and Mean Curvature

Gaussian and mean curvature also fully describe local bending:

Gaussian:
$$K := \kappa_1 \kappa_2$$

mean: $H := \frac{1}{2}(\kappa_1 + \kappa_2)$

K > 0"developable"K = 0K < 0 $H \neq 0$ $H \neq 0$ "minimal"H = 0

Gauss's Theorema Egregium

The Gaussian curvature of an embedded smooth surface in \mathbb{R}^3 is invariant under the local isometries.

Isometric Invariance

isometry = length-preserving transform

End of the Story?

 $K = \kappa_1 \kappa_2$

Second derivative quantity

End of the Story?

http://www.integrityware.com/images/MerceedesGaussianCurvature.jpg

Non-unique

Summary of Gaussian and Mean Curvatures

• $K = \kappa_1 \kappa_2$ and $H = \frac{1}{2}(\kappa_1 + \kappa_2)$ are Gaussian and mean curvatures

- Locally isometric surfaces are invariant measured by Gaussian curvature
- Gaussian curvatures are vulnerable to noises in practice and not informative
- Stronger shape descriptors are needed