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Warm Up (Review)
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Directional Normal Curvature
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Note: k,, is not the curvature k of y



Directional Normal Curvature
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Note: k,, is not the curvature k of y



Principal Curvatures

Maximal curvature: k; = K., = max K,(@)

%
Minimal curvature: K, = k,;, = min K,(@)




Principal Directions

planes normal
of principal / vector
curvatures -

tangent
plane

Tangent plane with principal
directions (7; and t,) as axes

Euler’s Theorem: Planes of principal curvature are orthogonal
and independent of parameterization.

K. (@) = Kk, cos® @ + Kk, sin® @, @ = angle with ¢
n 1 2 g 1



Agenda

» Shape Operator
* First Funhdamental Form
« Fundamental Theorem of Surfaces

e Gaussian and Mean Curvature



Shape Operator



Shape Operator

* Note that
» VX, DN X IS in the tangent plane

- VX, Df,X IS also in the tangent plane

» So the column space of DN, € R”* and Df, € R>* are
the same

* In other words,
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Shape Operator

--------------------------

» Note that . N Df,(X)
- VX, DN, X is in the tangent plane
- VX, Df,X is also in the tangent plane:

...........................

.

DN,(X)
- So the column space of DN, € R>* is a subspace of

the column space of Df, € R

- In other words, 3§ € R>* such that DN, = Df,S

. S is called the shape operator



A Linear Map That Tells Us Normal Change

DN, = Df,S,

VX € T,(R®), |[DN,1X|= [Df,1SX

* Interpretation:
- When p moves along X, we want to know the

direction of normal change d € R
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A Linear Map That Tells Us Normal Change

DN, = Df,S,

VX € T,(R®), [DN,IX =|Df,1SX

* Interpretation:
- When p moves along X, we want to know the

direction of normal change d € R
d is just along the curve if p moves along $X

. This linear map S predicts the normal change when
p moves along any direction!



Computation of Principal Directions

* Principal directions are the eigenvectors of S
* Principal curvatures are the eigenvalues of S

* Note: S Iis not a symmetric matrix! Hence,
eigenvectors are not orthogonal in R?; only orthogonal
when mapped to R’



Consider a nonstandard parameterization of the cy

Example

(sheared along 2):

f(u,v) := [cos(n), sin(u), u + v]!

N = | sin(w)

_cos(u)_

DN =

T

K, (X)) =0

DN, = Df,S

K,(X5) =1

- -]

1 O
-1 0

Df =

—sin(u) O
cos(u) O

—sin(u) O]
cos(u) 0)
1 1

Inder

Verify the eigens of S




Summary of Shape Operator

 Alinear map between movement of point and
movement of normal change

* The eigen-decomposition gives the principal curvature
direction and values



First Fundamental Form



First Claim

Curvature
completely determines
local surface geometry.



Does Curvature Uniquely
Determine Global Geometry?
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Does Curvature Uniquely
Determine Global Geometry?

f/>
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However,

df and f* such that:
(principal) curvature value and directions are the same

for any pair (f(p), f*(p)), Vp € U




Does Curvature Uniquely
Determine Global Geometry?

f/> %
;é
However,

Curvature is Insufficient to
Determine Surface Globally




Other than measuring how the
surface bends, we should also
measure length and angle!



Local Isometric Surfaces

We wrap the plane to become a cylinder without any
distortion. That means, curve length can be preserved
under the change of shape.

How can we quantify such invariance?

Reading: P39 of TS Figure credit: Kenneth Lloyd Patrick Rose



First Fundamental Form

. Defined as the inner product in Tp([R3):
L(X,Y) = (D];X, D];Y)
_ vT(nT
= L(X,Y) = X' (Df, Df,)Y

- I: First fundament form, given p, we obtain a bilinear
function

- I, is dependent on both p and f



Arc-length by I(X, Y)
- Suppose a point p € U is moving with velocity X(7)
y() = f(p() = f(py + [ X(1)dr)

0
= 7'(t) = Df,, | X(®)]

¢ SO

5

S() = nﬂwm=J

\/ (Df, o X(0), D X(2)) dit

0

0
\/ L, (X(), X(1))dt
Jo




Arc-length by I(X, Y)

s(1) = [O VLo X(0.X@) dr

With I, we have completely determined curve length
within the surface without referring to 1



Local Isometric Surfaces

For two surfaces M and M*,
. If there exists parameterizations f(U) = M and
f4(U) = M
. suchthatl, =17, Vp e U
» Then the two surfaces are locally isometric

Preserve length between corresponding curves!

Reading: P39 of TS Figure credit: Kenneth Lloyd Patrick Rose



Local Isometric Surfaces

Verify by yourself:
fu,v) = [u,v,01", f*(u,v) = [cosu,sinu,v]’

onU={(u,v):ue02x),ve 1)}

Reading: P39 of TS Figure credit: Kenneth Lloyd Patrick Rose



Shape Classification by Isometry




Geodesic Distances

Intrinsically
far

Extrinsically
close



Distance Distribution Descriptor

« Compute distribution of distances for point pairs
randomly picked on the surface

B A ™ L
> YN L A




Angle of Curves by I(X, Y)

 Given two vectors (e.g., ii;
maximal principal direction) « Df[Y]
Df,[Y] € T;(R’) ]

__DhiX]

- The angle @ between the vectors is:
DX DY I(X, Y)

IDEXIIDAYI — \/ICK, X)\/I(Y, Y)

cos @ = (



Angle of Curves by I(X, Y)

B I(X,Y)
VI X)/I(Y, Y)

COS @

With I, we have completely determined angles
within the surface without referring to 1



Summary of First Fundamental Form

* |s a bilinear function over movement directions
(velocities) in the tangent space of T (R?)

* Induced by the inner product in the tangent space at
surface point f(p)

« Completely determines curve lengths and angles
within the surface



Fundamental Theorem of
Surfaces



First and Second Fundamental Forms

* First fundamental form (angle and length):
I(X,Y) = (Df,X,Df,Y)

- Second fundamental form (bending):
II(X, Y) = (DN,X,Df,Y)

« Recall the definition of normal curvature:

x) (DN, X,Df,X)  1I(X,X)
K = =
" (DEX,DAX)  I(X,X)



Uniqueness Result

Theorem:
A smooth surface is determined up to
rigid motion by its first and second
fundamental forms.

Note: compatible first and second fundamental forms
have to satisfy the Gauss-Codazzi condition (just FYI)



Gaussian and Mean Curvature



Gaussian and Mean Curvature

« Gaussian and mean curvature also fully describe local
bending:
Gaussian: K := kk,

mean: H = %(Kl + K5)

Sz < //'
7T =5 5 \\
o 5 &

K>0 “developable” K =10 K <0
H #0 H#0 ‘minimal” H = 0



Gauss's Theorema Egregium

The Gaussian curvature of an
embedded smooth surface in R’ is
invariant under the local isometries.



Isometric Invariance

geodesic = intrinsic

isometry = length-preserving transform



End of the Story?

K = K1 K9

Second derivative quantity



End of the Story?

http://www.integrityware.com/images/MerceedesGaussianCurvature.jpg

Non-unique



Summary of Gaussian and Mean
Curvatures

1
. K=xx,and H = E(Kl + x,) are Gaussian and mean

curvatures

* Locally isometric surfaces are invariant measured by
Gaussian curvature

 (Gaussian curvatures are vulnerable to noises in
practice and not informative

» Stronger shape descriptors are needed



