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κn(X) := ⟨T, ⃗κ ⟩ =
⟨Dfp(X), DNp(X)⟩

∥Dfp(X)∥2



Principal Curvatures
Maximal curvature: 

Minimal curvature: 

κ1 = κmax = max
φ

κn(φ)

κ2 = κmin = min
φ

κn(φ)
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Euler’s Theorem: Planes of principal curvature are orthogonal

and independent of parameterization.

Principal Directions

κn(φ) = κ1 cos2 φ + κ2 sin2 φ, φ = angle with t1

t1

Tangent plane with principal 

directions (  and ) as axest1 t2

t2

φ



Agenda

• Shape Operator


• First Fundamental Form


• Fundamental Theorem of Surfaces


• Gaussian and Mean Curvature



Shape Operator



Shape Operator
• Note that


•  is in the tangent plane

•  is also in the tangent plane


• So the column space of  and  are 
the same


• In other words, 

∀X, DNpX
∀X, DfpX

DNp ∈ ℝ3×2 Dfp ∈ ℝ3×2
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Shape Operator
• Note that


•  is in the tangent plane

•  is also in the tangent plane


• So the column space of  is a subspace of 
the column space of 

• In other words,  such that 

•  is called the shape operator

∀X, DNpX
∀X, DfpX

DNp ∈ ℝ3×2

Dfp ∈ ℝ3×2

∃S ∈ ℝ2×2 DNp = DfpS
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A Linear Map That Tells Us Normal Change

, 


  

• Interpretation:

• When  moves along , we want to know the 

direction of normal change 
•  is just along the curve if  moves along 

• This linear map  predicts the normal change when 
 moves along any direction!

DNp = DfpS

∀X ∈ Tp(ℝ2), [DNp]X = [Dfp]SX

p X
⃗d ∈ ℝ3

⃗d p SX
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Computation of Principal Directions

• Principal directions are the eigenvectors of 

• Principal curvatures are the eigenvalues of 

• Note:  is not a symmetric matrix! Hence, 
eigenvectors are not orthogonal in ; only orthogonal 
when mapped to 

S

S

S
ℝ2

ℝ3



Consider a nonstandard parameterization of the cylinder 
(sheared along ):z

Example

Df =
−sin(u) 0
cos(u) 0

1 1
f(u, v) := [cos(u), sin(u), u + v]T

Df (X2)
Df (X1)

N

N =
cos(u)
sin(u)

0

X1 = [0
1]

κn(X1) = 0

DN =
−sin(u) 0
cos(u) 0

0 0

X2 = [−1
1 ]

κn(X2) = 1

Verify the eigens of S
DNp = DfpS ⇒ S = [ 1 0

−1 0]



Summary of Shape Operator

• A linear map between movement of point and 
movement of normal change

• The eigen-decomposition gives the principal curvature 
direction and values



First Fundamental Form



Curvature 

completely determines 

local surface geometry.

First Claim



Does Curvature Uniquely 
Determine Global Geometry?

≠



Does Curvature Uniquely 
Determine Global Geometry?

f

f*

 such that:

(principal) curvature value and directions are the same 
for any pair , 

∃f and f*

( f(p), f*(p)) ∀p ∈ U

≠

However, 



Does Curvature Uniquely 
Determine Global Geometry?

f

f*

 such that (principal) curvature value and 
directions are the same for any pair , 

∃f and f*
( fp, f*p ) ∀p ∈ U

≠

However, 

Curvature is Insufficient to 
Determine Surface Globally 



Other than measuring how the 
surface bends, we should also 

measure length and angle!



Local Isometric Surfaces

We wrap the plane to become a cylinder without any 
distortion. That means, curve length can be preserved 
under the change of shape. 


How can we quantify such invariance?

Figure credit: Kenneth Lloyd Patrick RoseReading: P39 of TS



First Fundamental Form

• Defined as the inner product in : 

   

                      

• : First fundament form, given , we obtain a bilinear 
function

•  is dependent on both  and 

Tp(ℝ3)

Ip(X, Y ) = ⟨DfpX, DfpY⟩

I p

Ip p f

⇒ Ip(X, Y ) = XT(DfT
p Dfp)Y



Arc-length by I(X, Y)
• Suppose a point  is moving with velocity 

            

     

• So:


 

p ∈ U X(t)
γ(t) = f(p(t)) = f(p0 + ∫

t

0
X(t)dt)

⇒ γ′￼(t) = Dfp(t)[X(t)]

s(t) = ∫
t

0
∥γ′￼(t)∥dt = ∫

t

0
⟨Dfp(t)X(t), Dfp(t)X(t)⟩dt

= ∫
t

0
Ip(t)(X(t), X(t))dt



Arc-length by I(X, Y)

 

With , we have completely determined curve length 
within the surface without referring to 

s(t) = ∫
t

0
Ip(t)(X(t), X(t)) dt

I
f



Local Isometric Surfaces

For two surfaces  and , 

• If there exists parameterizations  and 

• such that , 
• Then the two surfaces are locally isometric 


Preserve length between corresponding curves!

M M*
f(U) = M

f*(U) = M*
Ip = I*p ∀p ∈ U

Figure credit: Kenneth Lloyd Patrick RoseReading: P39 of TS



Local Isometric Surfaces

Verify by yourself:


,   

on 

f(u, v) = [u, v,0]T f*(u, v) = [cos u, sin u, v]T

U = {(u, v) : u ∈ (0,2π), v ∈ (0,1)}

Figure credit: Kenneth Lloyd Patrick RoseReading: P39 of TS



Shape Classification by Isometry



Geodesic Distances

Extrinsically 
close

Intrinsically 
far



Distance Distribution Descriptor
• Compute distribution of distances for point pairs 

randomly picked on the surface



Angle of Curves by I(X, Y)

• Given two vectors (e.g., 

maximal principal direction)

 

• The angle  between the vectors is:


         

Dfp[Y ] ∈ Tfp(ℝ
3)

φ
cos φ = ⟨

DfpX
∥DfpX∥

,
DfpY

∥DfpY∥
⟩ =

I(X, Y )
I(X, X) I(Y, Y)

fp Dfp[X]
Dfp[Y ] φ



Angle of Curves by I(X, Y)

                  

With , we have completely determined angles 
within the surface without referring to 

cos φ =
I(X, Y )

I(X, X) I(Y, Y)

I
f



Summary of First Fundamental Form

• Is a bilinear function over movement directions 
(velocities) in the tangent space of 

• Induced by the inner product in the tangent space at 
surface point  


• Completely determines curve lengths and angles 
within the surface

Tp(ℝ2)

f(p)



Fundamental Theorem of 
Surfaces



First and Second Fundamental Forms

• First fundamental form (angle and length):


• Second fundamental form (bending):


• Recall the definition of normal curvature:


                                

I(X, Y ) = ⟨DfpX, DfpY⟩

II(X, Y ) = ⟨DNpX, DfpY⟩

κn(X) :=
⟨DNpX, DfpX⟩
⟨DfpX, DfpX⟩

=
II(X, X)
I(X, X)



Uniqueness Result

Theorem:

A smooth surface is determined up to 

rigid motion by its first and second 
fundamental forms.

Note: compatible first and second fundamental forms 
have to satisfy the Gauss-Codazzi condition (just FYI)



Gaussian and Mean Curvature



“developable”

Gaussian and Mean Curvature
• Gaussian and mean curvature also fully describe local 

bending:
K := κ1κ2Gaussian:

mean: H :=
1
2

(κ1 + κ2)

“minimal”



Gauss's Theorema Egregium

The Gaussian curvature of an 
embedded smooth surface in  is 
invariant under the local isometries.

ℝ3



Isometric Invariance

geodesic = intrinsic

isometry = length-preserving transform



End of the Story?

Second derivative quantity

Noisy!



End of the Story?

Non-unique
http://www.integrityware.com/images/MerceedesGaussianCurvature.jpg

Looks the same!



Summary of Gaussian and Mean 
Curvatures

•  and  are Gaussian and mean 
curvatures


• Locally isometric surfaces are invariant measured by 
Gaussian curvature


• Gaussian curvatures are vulnerable to noises in 
practice and not informative


• Stronger shape descriptors are needed

K = κ1κ2 H =
1
2

(κ1 + κ2)


