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L2: Surfaces
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Machine Learning meets Geometry



Our Focus Today: Surface

http://web.mit.edu/manoli/crust/www/slides/piggy.jpg



Agenda

• Parameterized Surface


• Manifold


• Differential Map


• Curvature 


• Principal Curvature



Lots of (sloppy) math!

http://www.wgnflag.com/xcart/images/P/G-50_StopSeatBeltsStockSign.jpg



Parameterized Surface



Parametrized Surface

Image from Wikipedia

A parameterized surface is a map from a two-
dimensional region  into U ⊂ ℝ2 ℝn

f : U → ℝn

The set of points  is called the image of the parameterization.f(U)



Example
• Example: We can express a saddle as a 

parameterized surface:

U

1

1
f

U := {(u, v) ∈ ℝ2 : u2 + v2 ≤ 1}
f(u, v) = [u, v, u2 − v2]T



• Smoothly “interpolate” between a set of points Pi

Application: Bezier Surface, Spline Surface



Application: Bezier Surface, Spline Surface
Widely used in design industry (e.g., car modeling)



(Differentiable) Manifold



Smoothness as a Local Property
• Things that can be discovered by local  

observation: point + neighborhood



Local Smoothness
• Things that can be discovered by local  

observation: point + neighborhood

differentiable   
1-1 mapping



• Things that can be discovered by local  
observation: point + neighborhood

Local to Global

continuous  
1-1 mapping

u

v

Tangents, normals,  
curvatures, curve  
angles, distances



Tangent Plane
• One can attach to every point  a tangent plane 
• Intuitively, it contains the possible directions in which 

one can tangentially pass through . 

p Tp

p

p
Tp(ℝ3)



Differential Map



Differential of a Surface
• Relate the movement of point in the domain and on 

the surface

X f(U)U

Dfp(X )

f

p

fp



Differential of a Surface

Total differential: df =
∂f
∂u

du +
∂f
∂v

dvTotal differential: 

X
f(U)

U

Df (X)

f

If point  moves along vector  by , the 
movement of  is:

p ∈ ℝ2 X = [u, v]T ϵ
fp

Δfp ≈
∂f
∂u

(ϵu) +
∂f
∂v

(ϵv) = ϵ [ ∂f
∂u

,
∂f
∂v ] [u

v]

Δf ≈
∂f
∂u

Δu +
∂f
∂v

Δv



Differential of a Surface

Total differential: df =
∂f
∂u

du +
∂f
∂v

dvTotal differential: 

X
f(U)

U

Df (X)

f

If point  moves with velocity  by , the 
movement of  is:

p ∈ ℝ2 X = [u, v]T ϵ
fp

Δfp ≈
∂f
∂u

(ϵu) +
∂f
∂v

(ϵv) = ϵ [ ∂f
∂u

,
∂f
∂v ] [u

v]
Dfp := [ ∂f

∂u , ∂f
∂v ] ∈ ℝ3×2



Differential of a Surface

Total differential: df =
∂f
∂u

du +
∂f
∂v

dvTotal differential: 

X
f(U)

U

Df (X)

f

If point  moves with velocity  by , the 
movement of  is:

p ∈ ℝ2 X = [u, v]T ϵ
fp

Δfp ≈
∂f
∂u

(ϵu) +
∂f
∂v

(ϵv) = ϵ [ ∂f
∂u

,
∂f
∂v ] [u

v] = ϵ[Dfp]X

Dfp := [ ∂f
∂u , ∂f

∂v ] ∈ ℝ3×2 : differential (Jacobian)

       a linear map.
Dfp



Differential of a Surface

Total differential: df =
∂f
∂u

du +
∂f
∂v

dvTotal differential: 

X
f(U)

U

Df (X)

f

If point  moves with velocity  by , the 
movement of  is:

p ∈ ℝ2 X = [u, v]T ϵ
fp

Δfp ≈
∂f
∂u

(ϵu) +
∂f
∂v

(ϵv) = ϵ [ ∂f
∂u

,
∂f
∂v ] [u

v] = ϵ[Dfp]X

velocity in 2D domainDfp := [ ∂f
∂u , ∂f

∂v ] ∈ ℝ3×2



Differential of a Surface

df =
∂f
∂u

du +
∂f
∂v

dvTotal differential: 

X
f(U)

U

Df (X)

f

If point  moves with velocity  by , the 
movement of  is:

p ∈ ℝ2 X = [u, v]T ϵ
fp

Δfp ≈
∂f
∂u

(ϵu) +
∂f
∂v

(ϵv) = ϵ [ ∂f
∂u

,
∂f
∂v ] [u

v] = ϵ[Dfp]X

velocity in 3D space

velocity in 2D domainDfp := [ ∂f
∂u , ∂f

∂v ] ∈ ℝ3×2



Differential of a Surface

𝚍f =
∂f
∂u

𝚍u +
∂f
∂v

𝚍vTotal differential: 

X
f(U)

U

Df (X)

f

If point  moves along vector  by , the 
movement of  is:

p ∈ ℝ2 X = [u, v]T ϵ
fp

Δfp ≈
∂f
∂u

(ϵu) +
∂f
∂v

(ϵv) = ϵ [ ∂f
∂u

,
∂f
∂v ] [u

v] = ϵ[Dfp]X

Intuitively, the differential of a parameterized surface 
tells us how tangent vectors on the domain get mapped 
to tangent vectors in space:



Tangent Plane

 is a vector in 3D tangent plane[ ∂f
∂u

,
∂f
∂v ] [u

v]

These vectors don’t have to be orthogonal

Δfp ≈
∂f
∂u

(ϵu) +
∂f
∂v

(ϵv) = ϵ [ ∂f
∂u

,
∂f
∂v ] [u

v]

Tangent plane at point  is 
spanned by

f(u, v)

fu =
∂f
∂u

, fv =
∂f
∂v

fu fv



Df(0,0)(X )

An Example

f(u, v) = [u, v, u2 − v2]T

Dfp =
∂f1/∂u ∂f1/∂v
∂f2/∂u ∂f2/∂v
∂f3/∂u ∂f3/∂v

= [
1 0
0 1

2u −2v]
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Df(0,0)(X )

An Example

f(u, v) = [u, v, u2 − v2]T

Dfp =
∂f1/∂u ∂f1/∂v
∂f2/∂u ∂f2/∂v
∂f3/∂u ∂f3/∂v

= [
1 0
0 1

2u −2v]
X :=

3
4

[1, − 1]T

Df(X) =
3
4

[1, − 1,2(u + v)]T

e.g., at u = v = 0 : Df(X) = [
3
4

, −
3
4

,0]T



Df(0,0)(X )

An Example

f(u, v) = [u, v, u2 − v2]T

Dfp =
∂f1/∂u ∂f1/∂v
∂f2/∂u ∂f2/∂v
∂f3/∂u ∂f3/∂v

= [
1 0
0 1

2u −2v]
X :=

3
4

[1, − 1]T

Df(X) =
3
4

[1, − 1,2(u + v)]T

e.g., at u = v = 0 : Df(X) = [
3
4

, −
3
4

,0]T



Df(0,0)(X )

An Example

f(u, v) = [u, v, u2 − v2]T

Dfp =
∂f1/∂u ∂f1/∂v
∂f2/∂u ∂f2/∂v
∂f3/∂u ∂f3/∂v

= [
1 0
0 1

2u −2v]

        at , tangent space is spanned by  and . u = v = 1 [
1
0
2] [

0
1

−2]
e.g., at u = v = 0 : Df(X) = [

3
4

, −
3
4

,0]T

X :=
3
4

[1, − 1]T

Df(X) =
3
4

[1, − 1,2(u + v)]T



Df(0,0)(X )

An Example

f(u, v) = [u, v, u2 − v2]T

Dfp =
∂f1/∂u ∂f1/∂v
∂f2/∂u ∂f2/∂v
∂f3/∂u ∂f3/∂v

= [
1 0
0 1

2u −2v]

        at , tangent space is spanned by  and . u = v = 1 [
1
0
2] [

0
1

−2]
e.g., at u = v = 0 : Df(X) = [

3
4

, −
3
4

,0]T

X :=
3
4

[1, − 1]T

Df(X) =
3
4

[1, − 1,2(u + v)]T



Summary of Differential Map
• Tells us the velocity of point in 3D when the parameter 

changes in 2D


• Maps a vector in the tangent space of the domain to 
the tangent space of the surface


• Allows us to construct the bases of tangent plane


• Is a linear map

Dfp : Tp(ℝ2) → Tf(p)(ℝ3)



Curvature



Goal
Quantify how a surface bends.



Curvature of CurvesRecall:

Theorem:

Curvature and torsion determine geometry 

of a curve up to rigid motion.

35

The Binormal Vector

For points s, s.t. κ(s) ≠ 0, the 
binormal vector B(s) is defined 
as:

B(s) = T(s) × N(s)

The binormal vector defines the 
osculating plane 

T

N

B
N

T

B

T

N

N

T



Can curvature/torsion of 
a curve help us 

understand surfaces?



Curves: Change of Normal 
Describes Curve Bending



http://mathworld.wolfram.com/images/eps-gif/UnitSphere_800.gif

Surfaces: Change of Normal 
Describes Surface Bending

q



Surface Normals

Surface normal:

fu :=
∂f
∂u

, fv :=
∂f
∂v

N(u, v) =
fu × fv

∥fu × fv∥

 also as a function of N u, v

fu fv



Consider a nonstandard parameterization of the cylinder 
(sheared along ):z

Example

Df =
−sin(u) 0
cos(u) 0

1 1

N =
−sin(u)
cos(u)

1
× [

0
0
1] =

cos(u)
sin(u)

0

f(u, v) := [cos(u), sin(u), u + v]T

Df (X2)
Df (X1)

N



http://mathworld.wolfram.com/images/eps-gif/UnitSphere_800.gif

Measure the Change of Normal
Assume  moves along a curve  parameterized by arc-
length: , and the normal is  with unit norm

q γ
q = γ(s) N(s)

q



http://mathworld.wolfram.com/images/eps-gif/UnitSphere_800.gif

Measure the Change of Normal
Assume  moves along a curve  parameterized by arc-
length: , and the normal is  with unit norm

q γ
q = γ(s) N(s)

0 ≡
d
ds

⟨N(s), N(s)⟩ = 2⟨ ·N(s), N(s)⟩

Local change of normal is 
always in the tangent plane!

·N(s) ⊥ N(s)
q



Differential of Normal

dN =
∂N
∂u

du +
∂N
∂v

dvTotal differential: 

X U

f

If point  moves with velocity  by , the 
movement of  is:

p ∈ ℝ2 X = [u, v]T ϵ
Np

ΔNp =
∂N
∂u

(ϵu) +
∂N
∂v

(ϵv) = ϵ [ ∂N
∂u

,
∂N
∂v ] [u

v] = ϵ[DNp]X

DNp := [ ∂N
∂u , ∂N

∂v ] ∈ ℝ3×2

p
q = fp



Differential of Normal

dN =
∂N
∂u

du +
∂N
∂v

dvTotal differential: 

If point  moves with velocity  by , the 
movement of  is:

p ∈ ℝ2 X = [u, v]T ϵ
Np

ΔNp =
∂N
∂u

(ϵu) +
∂N
∂v

(ϵv) = ϵ [ ∂N
∂u

,
∂N
∂v ] [u

v] = ϵ[DNp]X

X U

f

DNp := [ ∂N
∂u , ∂N

∂v ] ∈ ℝ3×2

Note: [DNp]X ∈ Tp(ℝ3)

p
q = fp



Curvature  of  at ⃗κ γ p
• Recall we need the arc-length parameterization and 

measure the change of normal

• Recall that tangent vector  under arc-length 

parameterization. So we need to scale  by  so that:


• As  moves with velocity , the tangent is 


• the velocity of normal change is:


∥T∥ = 1
X μ

∥Dfp[μX]∥ = 1 ⟹ μ =
1

∥DfpX∥
p μX

Dfp[μX] =
DfpX

∥DfpX∥

DNp[μX] =
DNpX

∥DfpX∥



Curvature  of  at ⃗κ γ p

• The velocity of normal change is:


• We denote this quantity as  in this lecture (note that 
 in the last lecture is a scalar, the norm of this vector)

DNp[μX] =
DNpX

∥DfpX∥

⃗κ
κ



Directional Normal Curvature

κn(X) := ⟨T, ⃗κ ⟩ =
⟨Dfp(X), DNp(X)⟩

∥Dfp(X)∥2

Df

Df

Note:  is not the curvature  of κn κ γ

X U

p

f

Dfp(X)

DNp(X)

N

tangent plane



Relationship to Curvature of Curves

http://www.solitaryroad.com/c335.html

Drawing by Adrian Butscher

κn := ⟨ ⃗κ , T⟩

κg := ⟨ ⃗κ , N × T⟩
(Geodesic curvature)



Consider a nonstandard parameterization of the cylinder 
(sheared along ):z

Example
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1 1
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cos(u) 0

0 0
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Consider a nonstandard parameterization of the cylinder 
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⟨Df(X1), DN(X1)⟩
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Summary of Curvature

• Curvature quantifies the bending of surfaces


• Local change of normal (differential of normal) is 
always in the tangent plane


• Directional normal curvature quantifies how fast a 
surface bends along a direction



Principal Curvatures



Principal Curvatures
Maximal curvature: 

Minimal curvature: 

κ1 = κmax = max
φ

κn(φ)

κ2 = κmin = min
φ

κn(φ)

N

X1

X2

N X1N X2



Principal Directions

min curvature max curvaturetangent  plane in 3D

ϕ min

t1
t2

Principal directions:  
tangent vectors  
corresponding to


 and φmax φmin



Euler’s Theorem: Planes of principal curvature are orthogonal

and independent of parameterization.

Principal Directions

κn(φ) = κ1 cos2 φ + κ2 sin2 φ, φ = angle with t1

Tangent plane with principal 

directions as axes

t1

t2

φ



Principal Directions



Summary of Principal Curvatures

• The direction that bends fastest / slowest are principal 
directions, which are orthogonal to each other


• The corresponding curvatures are principal curvatures


