Office Hour

 Check Piazza



UCSan Diego Machine Learning meets Geometry

L2: Surfaces

Hao Su



Our Focus Today: Surface
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Agenda

Parameterized Surface
Manifold

Differential Map
Curvature

Principal Curvature
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Lots of (sloppy) math!




Parameterized Surface



Parametrized Surface

A parameterized surface is a map from a two-
dimensional region U C R? into R”

f:U—-R"

The set of points f(U) is called the image of the parameterization.

Image from Wikipedia



Example

« Example: We can express a saddle as a
parameterized surface:

U:={(u,v) eR?: u>+v>< 1}

fG,v) = [u,v,u® —v]"
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Application: Bezier Surface, Spline Surface

- Smoothly “interpolate” between a set of points P,

Control Point

Control Polygon

s(u,0) = 3 3 pis By (W) B} (v



Application: Bezier Surface, Spline Surface
Widely used in design industry (e.g., car modeling)

Polygon model NURBS model
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Poor surface quality Pure, smooth highlights



(Differentiable) Manifold



Smoothness as a Local Property

* Things that can be discovered by local
observation: point + neighborhood




Local Smoothness

* Things that can be discovered by local
observation: point + neighborhood

differentiable
1-1 mapping

o




Local to Global

* Things that can be discovered by local
observation: point + neighborhood

continuous | Tangents, normals,
1-1 mapping curvatures, curve
v —_— angles, distances
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Tangent Plane

. One can attach to every point p a tangent plane Tp

* Intuitively, it contains the possible directions in which
one can tangentially pass through p.




Differential Map



Differential of a Surface

* Relate the movement of point in the domain and on
the surface




Differential of a Surface

u

d d d d
Total differential: df = —fdu + —fdv —>Af & —fAu + —fAv
ou ov ou ov

If point p € R? moves along vector X = [u, v]” by ¢, the
movement of f, is:



Differential of a Surface

u

. . of of
Total differential: df = —du + —dv
ou ov

If point p € R? moves with velocity X = [u, v]’ by €, the
movement of]; is:



Differential of a Surface

&

Total differential: df = —du + —dv
ou ov

If point p € R? moves with velocity X = [u, v]’ by €, the
movement of]; is:

: : :
Af, ~ a—f(eu)+a—f(€ )= [a_i: a—f e

Df, := [ o ] c rR> Df,: differential (Jacobian)
o a linear map.



Differential of a Surface

&
f( )

Total differential: df = —du + —dv
ou ov

If point p € R? moves with velocity X = [u, v]’ by €, the
movement of]; is:

0 0 0
Aj;) 6_f(€u)+()_€(€ )=¢€ [d_i: a—{ [ ] = e[Dj;JZ

Df, := [a—f a—f] e R velocity in 2D domain

ou’ ov



Differential of a Surface

- A\
u
0 0
Total differential: df = —fdu + —fdv

ou ov
If point p € R? moves with velocity X = [u, v]’ by €, the

movement of]; IS velocity in 3D space

N
0 0 Jo o
Af, ~ ()—i(eu) + ()—f(GV) =€ [a_i’a_{ [ift] -

v

ou’ ov

Df, = [a—f,a—f] e R velocity in 2D domain



Differential of a Surface

Intuitively, the differential of a parameterized surface
tells us how tangent vectors on the domain get mapped
to tangent vectors in space:

0 0 Jo o
Af, ~ a—z(eu) + a—{(GV) =€ [a_ia_{ [5] kLA



Tangent Plane

of of
ou’ ov

[1‘“}1 IS a vector in 3D tangent plane

/¥

Tangent plane at point f(u, v) is
spanned by

_9 . _ 9
f”_au’ﬁ’_av A

These vectors don’t have to be orthogonal



An Example

f(u,v) =[u,v, u’ — 3"’

 of/ou of/0v]
Df, = |df/ou df,/ov| = f
ofz/ou dfz3/0v




An Example

f,v) = [u,v,u>—v'
ofilou oflov| 1 o

Df,= |h/ou dflov|=|0 1 f
ofs/ou  df;/0v 2u =2vl




An Example

fu,v) = [u,v,u® — v’
ofilou oflov| 1 o
Df,= |df/ou oftov| =| 0 1 f
Ofslou dfslov|  L2u —2v.] )y
3
X:=—]1,-11" U
4 = {)

DFX) = | \ﬁ 0).




An Example

fu,v) = [u,v,u® — v’
ofilou oflov| 1 o
Df,= |of/ou df/ov|=]0 1 /
ofs/ou  df;/0v 2u =2vl
3
X:=—]1,-11" U
4 ; u {»
4 X(0,0)

3 3 1.
eg,atu=v=0:Df(X) = [Z, — Z,O]



An Example

fu,v) = [u,v,u*— v’
ofilou oflov| 1 o
Df,= |of/ou df/ov|=]0 1 /
ofs/ou  df;/0v 2u =2vl
3
X:=—]1,-11" U
4 ; u {»
Df(X)==[1,- 1,2+ w)]" - \ -
f 4 X(0,0)
3 3 1.
eg,atu=v=0:Df(X) = [Z, — Z,O]

atu = v = 1, tangent space is spanned by



An Example

f,v) = [u,v,u* — v’

ofilou oflov| 1 o
Df,= |oflou oflov| =| 0 1 f

ofs/ou  df;/0v 2u =2vl
Xi= 2117 u

4 ; m ‘l,
Df(X) =—[1, — 1,2(u+w)]" - \7 -
/ 4 X(0,0)
303 1.

eg,atu=v=0:Df(X) = [Z, — Z,O]

atu = v = 1, tangent space is spanned by |Q]| and | 1




Summary of Differential Map

 Tells us the velocity of point in 3D when the parameter
changes in 2D

« Maps a vector in the tangent space of the domain to
the tangent space of the surface

 Allows us to construct the bases of tangent plane

* Is a linear map

Df, : T,(R*) — Ty, (R)



Curvature



Goal

Quantify how a surface bends.

ZERO CURVATURE  POSITIVE CURVATURE NEGATIVE CURVATURE




Recall: Curvature of Curves

Theorem:
Curvature and torsion determine geometry
of a curve up to rigid motion.



Can curvature/torsion of
a curve help us
understand surfaces?



Curves: Change of Normal
Describes Curve Bending




Surfaces: Change of Normal
Describes Surface Bending

http://mathworld.wolfram.com/images/eps-gif/UnitSphere_800.gif



Surface Normals

Surface normal:
_ XS )

N(u, v) =
) =X

N also as a function of u, v



Example

Consider a nonstandard parameterization of the cylinder
(sheared along 2):

f(u,v) := [cos(n), sin(u), u + v]’

—sin(u) O]

Df = | cos(u) 0
_ 1 1_
—sin(w)| O

N=]cos(u) | X|0] =
1 |1




Measure the Change of Normal

Assume g moves along a curve y parameterized by arc-
length: g = y(s), and the normal is N(s) with unit norm

http://mathworld.wolfram.com/images/eps-gif/UnitSphere_800.gif



Measure the Change of Normal

Assume g moves along a curve y parameterized by arc-
length: g = y(s), and the normal is N(s) with unit norm

d .
0= EU\’(S),N(S)) = 2(N(s), N(s))

N(s) L N(s)

Local change of normal is
always in the tangent plane!

http://mathworld.wolfram.com/images/eps-gif/UnitSphere_800.gif



Differential of Normal

f
ﬂ
@
. . ON ON
Total differential: dN = —du + —dv
ou ov

If point p € R? moves with velocity X = [u, v]” by €, the
P

movement of Np is:




Differential of Normal

f
h
@
. . ON ON
Total differential: dN = —du + —dv
ou ov

If point p € R? moves with velocity X = [u, v]” by €, the
P

movement of Np is:

AN ON (eu) + ON (ev) ON ON [u] ‘DN 1X
=—~/(eu)+ —(ev) =€ , =c
P ou % ou ov | LV P
: ON oN 3x2
DNp : [E’E] eR

Note: [DN,]X € T, (R



Curvature k of y at p

* Recall we need the arc-length parameterization and
measure the change of normal

. Recall that tangent vector || T|| = 1 under arc-length
parameterization. So we need to scale X by u so that:

1
IDfpX]ll =1 = p=

|Df, Xl
. As p moves with velocity uX, the tangent is
Df,[uX] Di
/,[ —
P |DfX||
* the velocity of normal change is:
DNpX
DN,[uX] =

IDfX]]



Curvature k of y at p

* The velocity of normal change is:
DN, X

I1DfX]]

DN,[uX] =

. We denote this quantity as & in this lecture (note that
K in the last lecture is a scalar, the norm of this vector)



Directional Normal Curvature

--------------------------

.

(Df,(X), DN,(X)) Y S
X)=(T,x)=—FL——__7
S AR &:’) e

U

Note: k,, is not the curvature k of y



Relationship to Curvature of Curves

I

N e I
K, == (K, NXT) I
I

(Geodesic curvature)

IDraWing by Adrian Butscher




Example

Consider a nonstandard parameterization of the cylinder
(sheared along z): ] _

_sin(u) 0
f(u,v) := [cos(n), sin(u), u + v]! Df = | cos(u) 0
_cos(u)_ L L

N = | sin(u) DN =

0




Consider a nonstandard parameterization of the cy
(sheared along 2):

f(u,v) := [cos(n), sin(u), u + v]!

N =

_cos(u)_

sin(u)
0

Example

DN =

Df =

—sin(u) O
cos(u) O

—sin(u)

cos(u)

1

0
0

iInder




Consider a nonstandard parameterization of the cy
(sheared along 2):

f(u,v) := [cos(n), sin(u), u + v]!

N = | sin(u)

_cos(u)_

Example

DN =

off 5ol

K,(X|) =

K,(X,) =

—sin(u) O
cos(u) O

—sin(u) O]
cos(u) 0)
1 1

iInder




Example

Consider a nonstandard parameterization of the cy

(sheared along 2):

f(u,v) := [cos(n), sin(u), u + v]! Df =

_cos(u)_
N = | sin(u) DN =
0

=[] %=1

—sin(u) 0

_ (Df(X,), DN(X,)

|DFC)I
_ (Df(X,), DN(Xy)

K,(X)

X
S0 = Do

cos(u) O
0

—sin(u) O
cos(u) 0)
1 1]

iInder




Summary of Curvature

« Curvature quantifies the bending of surfaces

 Local change of normal (differential of normal) is
always in the tangent plane

 Directional normal curvature quantifies how fast a
surface bends along a direction



Principal Curvatures



Principal Curvatures

Maximal curvature: k; = K., = max K,(@)

%
Minimal curvature: K, = k,;, = min K,(@)




Principal Directions

Principal directions:
tangent vectors
corresponding to

Pmax and Pmin

@ min > N
"&‘.{R\'I\":i:":'v{vd! o F
tangent plane in 3D min curvature max curvature




Principal Directions

planes normal
of principal / vector
curvatures -

tangent
plane

Tangent plane with principal
directions as axes

Euler’s Theorem: Planes of principal curvature are orthogonal
and independent of parameterization.

K. (@) = Kk, cos® @ + Kk, sin® @, @ = angle with ¢
n 1 2 g 1
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Summary of Principal Curvatures

* The direction that bends fastest / slowest are principal
directions, which are orthogonal to each other

* The corresponding curvatures are principal curvatures



