Office Hour

Check Piazza

L2: Surfaces

Hao Su

Our Focus Today: Surface

Agenda

Parameterized Surface

Manifold

Differential Map

Curvature

Principal Curvature

Lots of (sloppy) math!

Parameterized Surface

Parametrized Surface

A parameterized surface is a map from a twodimensional region $U \subset \mathbb{R}^2$ into \mathbb{R}^n

The set of points f(U) is called the **image** of the parameterization.

Example

• Example: We can express a saddle as a parameterized surface:

$$U := \{(u, v) \in \mathbb{R}^2 : u^2 + v^2 \le 1\}$$
$$f(u, v) = [u, v, u^2 - v^2]^T$$

Application: Bezier Surface, Spline Surface

- Smoothly "interpolate" between a set of points P_i

$$s(u, v) = \sum_{i=0}^{m} \sum_{j=0}^{n} \mathbf{p}_{i,j} B_i^m(u) B_j^n(v)$$

Application: Bezier Surface, Spline Surface

Widely used in design industry (e.g., car modeling)

Polygon model

NURBS model

Poor surface quality

Pure, smooth highlights

(Differentiable) Manifold

Smoothness as a Local Property

 Things that can be discovered by local observation: point + neighborhood

Local Smoothness

 Things that can be discovered by local observation: point + neighborhood

Local to Global

 Things that can be discovered by local observation: point + neighborhood

Tangents, normals, curvatures, curve angles, distances

Tangent Plane

- ullet One can attach to every point p a tangent plane \mathbf{T}_p
- Intuitively, it contains the possible directions in which one can tangentially pass through p.

Differential Map

 Relate the movement of point in the domain and on the surface

Total differential: $df = \frac{\partial f}{\partial u}du + \frac{\partial f}{\partial v}dv \Longrightarrow \Delta f \approx \frac{\partial f}{\partial u}\Delta u + \frac{\partial f}{\partial v}\Delta v$

If point $p \in \mathbb{R}^2$ moves along vector $X = [u, v]^T$ by e, the movement of f_p is:

$$\Delta f_p \approx \frac{\partial f}{\partial u}(\epsilon u) + \frac{\partial f}{\partial v}(\epsilon v) = \epsilon \left[\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}\right] \begin{bmatrix} u \\ v \end{bmatrix}$$

Total differential:
$$df = \frac{\partial f}{\partial u}du + \frac{\partial f}{\partial v}dv$$

If point $p \in \mathbb{R}^2$ moves with velocity $X = [u, v]^T$ by ϵ , the movement of f_p is:

$$\Delta f_p \approx \frac{\partial f}{\partial u}(\epsilon u) + \frac{\partial f}{\partial v}(\epsilon v) = \epsilon \left[\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v} \right] \begin{bmatrix} u \\ v \end{bmatrix}$$

$$Df_p := \left[\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}\right] \in \mathbb{R}^{3 \times 2}$$

Total differential:
$$df = \frac{\partial f}{\partial u}du + \frac{\partial f}{\partial v}dv$$

If point $p \in \mathbb{R}^2$ moves with velocity $X = [u, v]^T$ by ϵ , the movement of f_p is:

$$\Delta f_p \approx \frac{\partial f}{\partial u}(\epsilon u) + \frac{\partial f}{\partial v}(\epsilon v) = \epsilon \left[\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}\right] \begin{bmatrix} u \\ v \end{bmatrix} = \epsilon [Df_p]X$$

$$Df_p := \left[\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}\right] \in \mathbb{R}^{3 \times 2}$$
 Df_p : differential (Jacobian) a linear map.

Total differential:
$$df = \frac{\partial f}{\partial u}du + \frac{\partial f}{\partial v}dv$$

If point $p \in \mathbb{R}^2$ moves with velocity $X = [u, v]^T$ by ϵ , the movement of f_p is:

$$\Delta f_p \approx \frac{\partial f}{\partial u}(\epsilon u) + \frac{\partial f}{\partial v}(\epsilon v) = \epsilon \left[\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}\right] \begin{bmatrix} u \\ v \end{bmatrix} = \epsilon [Df_p] X$$

$$Df_p := \left[\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}\right] \in \mathbb{R}^{3 \times 2} \text{ velocity in 2D domain}$$

Total differential: $df = \frac{\partial f}{\partial u}du + \frac{\partial f}{\partial v}dv$

If point $p \in \mathbb{R}^2$ moves with velocity $X = [u, v]^T$ by ϵ , the movement of f_p is:

velocity in 3D space

$$\Delta f_p \approx \frac{\partial f}{\partial u}(\epsilon u) + \frac{\partial f}{\partial v}(\epsilon v) = \epsilon \left[\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}\right] \begin{bmatrix} u \\ v \end{bmatrix} = \epsilon D f_p X$$

$$D f_p := \left[\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}\right] \in \mathbb{R}^{3 \times 2} \text{ velocity in 2D domain}$$

Intuitively, the *differential* of a parameterized surface tells us how tangent vectors on the domain get mapped to tangent vectors in space:

$$\Delta f_p \approx \frac{\partial f}{\partial u}(\epsilon u) + \frac{\partial f}{\partial v}(\epsilon v) = \epsilon \left[\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v} \right] \begin{bmatrix} u \\ v \end{bmatrix} = \epsilon D f_p X$$

Tangent Plane

$$\Delta f_p \approx \frac{\partial f}{\partial u}(\epsilon u) + \frac{\partial f}{\partial v}(\epsilon v) = \epsilon \left[\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}\right] \begin{bmatrix} u \\ v \end{bmatrix}$$

$$\left| \frac{\partial f}{\partial u}, \frac{\partial f}{\partial v} \right| \begin{bmatrix} u \\ v \end{bmatrix}$$
 is a vector in 3D tangent plane

Tangent plane at point f(u, v) is spanned by

$$f_u = \frac{\partial f}{\partial u}, f_v = \frac{\partial f}{\partial v}$$

These vectors don't have to be orthogonal

$$f(u, v) = [u, v, u^2 - v^2]^T$$

$$Df_p = \begin{bmatrix} \partial f_1/\partial u & \partial f_1/\partial v \\ \partial f_2/\partial u & \partial f_2/\partial v \\ \partial f_3/\partial u & \partial f_3/\partial v \end{bmatrix} =$$

$$f(u,v) = [u,v,u^2 - v^2]^T$$

$$Df_p = \begin{bmatrix} \frac{\partial f_1}{\partial u} & \frac{\partial f_1}{\partial v} \\ \frac{\partial f_2}{\partial u} & \frac{\partial f_2}{\partial v} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2u & -2v \end{bmatrix}$$

$$Df_{(0,0)}(X)$$

$$f(u, v) = [u, v, u^2 - v^2]^T$$

$$Df_p = \begin{bmatrix} \partial f_1/\partial u & \partial f_1/\partial v \\ \partial f_2/\partial u & \partial f_2/\partial v \\ \partial f_3/\partial u & \partial f_3/\partial v \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2u & -2v \end{bmatrix}$$

$$X := \frac{3}{4}[1, -1]^T$$

$$Df(X) =$$

$$f(u, v) = [u, v, u^2 - v^2]^T$$

$$Df_p = \begin{bmatrix} \partial f_1/\partial u & \partial f_1/\partial v \\ \partial f_2/\partial u & \partial f_2/\partial v \\ \partial f_3/\partial u & \partial f_3/\partial v \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2u & -2v \end{bmatrix}$$

$$X := \frac{3}{4}[1, -1]^T$$

$$Df(X) = \frac{3}{4}[1, -1, 2(u+v)]^{T}$$

e.g., at
$$u = v = 0$$
: $Df(X) = \left[\frac{3}{4}, -\frac{3}{4}, 0\right]^T$

$$f(u, v) = [u, v, u^2 - v^2]^T$$

$$Df_p = \begin{bmatrix} \partial f_1/\partial u & \partial f_1/\partial v \\ \partial f_2/\partial u & \partial f_2/\partial v \\ \partial f_3/\partial u & \partial f_3/\partial v \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2u & -2v \end{bmatrix}$$

$$X := \frac{3}{4}[1, -1]^T$$

$$Df(X) = \frac{3}{4}[1, -1, 2(u+v)]^{T}$$

e.g., at
$$u = v = 0$$
: $Df(X) = \left[\frac{3}{4}, -\frac{3}{4}, 0\right]^T$

at u = v = 1, tangent space is spanned by

$$f(u, v) = [u, v, u^2 - v^2]^T$$

$$Df_p = \begin{bmatrix} \partial f_1/\partial u & \partial f_1/\partial v \\ \partial f_2/\partial u & \partial f_2/\partial v \\ \partial f_3/\partial u & \partial f_3/\partial v \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2u & -2v \end{bmatrix}$$

$$X := \frac{3}{4}[1, -1]^T$$

$$Df(X) = \frac{3}{4}[1, -1, 2(u+v)]^{T}$$

e.g., at
$$u = v = 0$$
: $Df(X) = \left[\frac{3}{4}, -\frac{3}{4}, 0\right]^T$

at
$$u = v = 1$$
, tangent space is spanned by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Summary of Differential Map

- Tells us the velocity of point in 3D when the parameter changes in 2D
- Maps a vector in the tangent space of the domain to the tangent space of the surface
- Allows us to construct the bases of tangent plane
- Is a linear map

$$Df_p: \mathbf{T}_p(\mathbb{R}^2) \to \mathbf{T}_{f(p)}(\mathbb{R}^3)$$

Curvature

Goal

Quantify how a surface **bends**.

Recal: Curvature of Curves

Theorem:

Curvature and torsion determine geometry of a curve up to rigid motion.

Can curvature/torsion of a curve help us understand surfaces?

Curves: Change of Normal Describes Curve Bending

Surfaces: Change of Normal Describes Surface Bending

Surface Normals

$$f_u := \frac{\partial f}{\partial u}, f_v := \frac{\partial f}{\partial v}$$

Surface normal:

$$N(u, v) = \frac{f_u \times f_v}{\|f_u \times f_v\|}$$

N also as a function of u, v

Consider a nonstandard parameterization of the cylinder (sheared along z):

$$f(u, v) := [\cos(u), \sin(u), u + v]^T$$

$$Df = \begin{bmatrix} -\sin(u) & 0 \\ \cos(u) & 0 \\ 1 & 1 \end{bmatrix}$$

$$N = \begin{bmatrix} -\sin(u) \\ \cos(u) \\ 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(u) \\ \sin(u) \\ 0 \end{bmatrix}$$

Measure the Change of Normal

Assume q moves along a curve γ parameterized by arclength: $q = \gamma(s)$, and the normal is N(s) with unit norm

Measure the Change of Normal

Assume q moves along a curve γ parameterized by arclength: $q = \gamma(s)$, and the normal is N(s) with unit norm

Differential of Normal

Total differential: $dN = \frac{\partial N}{\partial u}du + \frac{\partial N}{\partial v}dv$

If point $p \in \mathbb{R}^2$ moves with velocity $X = [u, v]^T$ by ϵ , the

movement of
$$N_p$$
 is:
$$\Delta N_p = \frac{\partial N}{\partial u}(\epsilon u) + \frac{\partial N}{\partial v}(\epsilon v) = \epsilon \left[\frac{\partial N}{\partial u}, \frac{\partial N}{\partial v}\right] \begin{bmatrix} u \\ v \end{bmatrix} = \epsilon [DN_p]X$$

$$DN_p := \left[\frac{\partial N}{\partial u}, \frac{\partial N}{\partial v}\right] \in \mathbb{R}^{3 \times 2}$$

Differential of Normal

Total differential: $dN = \frac{\partial N}{\partial u}du + \frac{\partial N}{\partial v}dv$

If point $p \in \mathbb{R}^2$ moves with velocity $X = [u, v]^T$ by ϵ , the movement of N_n is:

movement of
$$N_p$$
 is:
$$\Delta N_p = \frac{\partial N}{\partial u}(\epsilon u) + \frac{\partial N}{\partial v}(\epsilon v) = \epsilon \left[\frac{\partial N}{\partial u}, \frac{\partial N}{\partial v}\right] \begin{bmatrix} u \\ v \end{bmatrix} = \epsilon [DN_p]X$$

$$DN_p := \left[\frac{\partial N}{\partial u}, \frac{\partial N}{\partial v}\right] \in \mathbb{R}^{3 \times 2}$$

Note: $[DN_p]X \in \mathbf{T}_p(\mathbb{R}^3)$

Curvature $\overrightarrow{\kappa}$ of γ at p

- Recall we need the arc-length parameterization and measure the change of normal
- Recall that tangent vector $\|\mathbf{T}\| = 1$ under arc-length parameterization. So we need to scale X by μ so that:

$$||Df_p[\mu X]|| = 1 \qquad \Longrightarrow \qquad \mu = \frac{1}{||Df_p X||}$$

• As p moves with velocity μX , the tangent is

$$Df_p[\mu X] = \frac{Df_p X}{\|Df_p X\|}$$

the velocity of normal change is:

$$DN_p[\mu X] = \frac{DN_p X}{\|Df_p X\|}$$

Curvature $\overrightarrow{\kappa}$ of γ at p

The velocity of normal change is:

$$DN_p[\mu X] = \frac{DN_p X}{\|Df_p X\|}$$

• We denote this quantity as $\overrightarrow{\kappa}$ in this lecture (note that κ in the last lecture is a scalar, the norm of this vector)

Directional Normal Curvature

Note: κ_n is not the curvature κ of γ

Relationship to Curvature of Curves

$$\kappa_g := \langle \overrightarrow{\kappa}, \mathbf{N} \times \mathbf{T} \rangle$$

(Geodesic curvature)

Consider a nonstandard parameterization of the cylinder (sheared along z):

$$f(u, v) := [\cos(u), \sin(u), u + v]^T$$

$$N = \begin{bmatrix} \cos(u) \\ \sin(u) \\ 0 \end{bmatrix} \qquad DN =$$

$$f(u,v) := [\cos(u), \sin(u), u+v]^T \qquad Df = \begin{bmatrix} -\sin(u) & 0 \\ \cos(u) & 0 \\ 1 & 1 \end{bmatrix}$$

Consider a nonstandard parameterization of the cylinder (sheared along z):

$$f(u, v) := [\cos(u), \sin(u), u + v]^{T} \qquad Df = \begin{bmatrix} -\sin(u) & 0 \\ \cos(u) & 0 \\ 1 & 1 \end{bmatrix}$$

$$N = \begin{bmatrix} \cos(u) \\ \sin(u) \\ 0 \end{bmatrix} \qquad DN = \begin{bmatrix} -\sin(u) & 0 \\ \cos(u) & 0 \\ 0 & 0 \end{bmatrix}$$

$$Df(X_{2}) \stackrel{N}{\longrightarrow} Df(X_{3})$$

Consider a nonstandard parameterization of the cylinder (sheared along z):

$$f(u, v) := [\cos(u), \sin(u), u + v]^T$$
 $Df = \begin{bmatrix} \sin(u) & 0 \\ \cos(u) & 0 \end{bmatrix}$

$$f(u, v) := [\cos(u), \sin(u), u + v]^{T} \qquad Df = \begin{bmatrix} -\sin(u) & 0 \\ \cos(u) & 0 \\ 1 & 1 \end{bmatrix}$$

$$N = \begin{bmatrix} \cos(u) \\ \sin(u) \\ 0 \end{bmatrix} \qquad DN = \begin{bmatrix} -\sin(u) & 0 \\ \cos(u) & 0 \\ 0 & 0 \end{bmatrix}$$

$$Df(X_{2}) \stackrel{N}{\longrightarrow} Df(X_{3})$$

$$X_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad X_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\kappa_n(X_1) =$$

$$\kappa_n(X_2) =$$

Consider a nonstandard parameterization of the cylinder (sheared along z):

$$f(u, v) := [\cos(u), \sin(u), u + v]^{T} \qquad Df = \begin{bmatrix} -\sin(u) & 0 \\ \cos(u) & 0 \\ 1 & 1 \end{bmatrix}$$

$$N = \begin{bmatrix} \cos(u) \\ \sin(u) \\ 0 \end{bmatrix} \qquad DN = \begin{bmatrix} -\sin(u) & 0 \\ \cos(u) & 0 \\ 0 & 0 \end{bmatrix}$$

$$X_{1} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad X_{2} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\kappa_{n}(X_{1}) = \frac{\langle Df(X_{1}), DN(X_{1}) \rangle}{\|Df(X_{1})\|^{2}} = 0$$

$$\kappa_{n}(X_{2}) = \frac{\langle Df(X_{2}), DN(X_{2}) \rangle}{\|Df(X_{2})\|^{2}} = 1$$

Summary of Curvature

Curvature quantifies the bending of surfaces

 Local change of normal (differential of normal) is always in the tangent plane

 Directional normal curvature quantifies how fast a surface bends along a direction

Principal Curvatures

Principal Curvatures

Maximal curvature: $\kappa_1 = \kappa_{\max} = \max_{\varphi} \kappa_n(\varphi)$ Minimal curvature: $\kappa_2 = \kappa_{\min} = \min_{\varphi} \kappa_n(\varphi)$

Principal Directions

Principal directions: tangent vectors corresponding to φ_{\max} and φ_{\min}

Principal Directions

Euler's Theorem: Planes of principal curvature are **orthogonal** and independent of parameterization.

$$\kappa_n(\varphi) = \kappa_1 \cos^2 \varphi + \kappa_2 \sin^2 \varphi, \qquad \varphi = \text{angle with } t_1$$

Principal Directions

Summary of Principal Curvatures

 The direction that bends fastest / slowest are principal directions, which are orthogonal to each other

The corresponding curvatures are principal curvatures