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Geometry Understanding is Important

Autonomous driving

Robotics Augmented  
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Medical Image Processing



Use Machine Learning to Understand Geometries



Topics Covered in This Course
• Geometry theories
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The Binormal Vector

For points s, s.t. κ(s) ≠ 0, the 
binormal vector B(s) is defined 
as:

B(s) = T(s) × N(s)

The binormal vector defines the 
osculating plane 
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Topics Covered in This Course
• Computer Representation of Geometries



Topics Covered in This Course
• Sensing: 3D reconstruction from a single image



Topics Covered in This Course
• Sensing: 3D reconstruction from multiple views



Topics Covered in This Course
• Geometry Processing: Local geometric property estimation



Topics Covered in This Course
• Geometry Processing: Surface reconstruction



Topics Covered in This Course
• Recognition: Object classification



Topics Covered in This Course
• Recognition: Object detection



Topics Covered in This Course
• Recognition: 6D pose estimation



Topics Covered in This Course
• Recognition: Segmentation



Topics Covered in This Course
• Recognition: Human pose estimation



Topics Covered in This Course
• Relationship Analysis: Shape correspondences
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Course Logistic



Instructors

Instructor: Hao Su TA: Jiayuan Gu TA: Xiaoshuai Zhang



Teaching Goal
• State-of-the-art

• Enable you to read and replicate recent 3D papers 
in top CV/CG conferences (not industry job oriented)

• Hands-on
• Heavy programming assignments to exercise what 

are taught in class

• Foundational
• Theory problems are proof based
• Programming problems ask you to implement low-

level modules from scratch



Pre-requisite: Technique
• Skilled in Linear Algebra

• Familiar with Multi-variable Calculus 

• Familiar with Probability and Numerical Methods

• Strong programming skills
• Familiar with Linux Toolchain 
• Familiar with python, numpy, and pytorch

• Course/project experiences in computer vision or 
deep learning 



Background Check
• On Piazza now (HW0)

• Visible to enrolled and waitlist students

• 5 points in your final grade 

• Mandatory! We will not grade your subsequent 
homeworks without seeing your HW0. 

• If you are in the waitlist and intend to enroll, you need 
to submit HW0 by this deadline

• Due: 1/12/2022



Pre-requisite: Resources

• This course requires deep learning resources (to run a 
3D recognition challenge)

• Unfortunately, we do not have computational 
resources to support ~50 students

• Please find the server with the following configuration:
>= 50G disk space
>= 1 GPU with 10G memory



Assignments
• 4 assignments and 1 final project

• HW0: due week 2 (5 points)
• HW1: due week 4 (20 points)
• HW2: due week 6 (20 points)
• HW3: due week 8 (20 points)
• Final project: final week (35 points)
• No mid-term/final exams

• Extra credit for participation 5% (ask/answer questions 
in class, attend office hours)

• HW0-HW3: theory problems + programming
• Late policy: 15% grade reduction for each 12 hours 

late. No acceptance 72 hours after the due time.



3D Recognition Competition 

• HW0-HW3: build individual modules

• Final project: integrate modules and test new ideas. 
Score by performance ranking. Online evaluation 
system will be set up

• We estimate >=15 hrs per week (out of class) solid 
time commitment

• We allow you to see homework (through Piazza) and 
attend the competition even if you audit the course



Course Resources

• Course website: https://haosulab.github.io/ml-meets-
geometry/WI22/index.html (Google “Hao Su”  Prof. 
Homepage  Teaching  this link) 
• Collaboration policy
• Lecture slides
• Office hour and location

• Piazza
• Homework/Solution release
• Discussions 

→
→ →



Office Hour

• See course website



Questions?



Curve
• Definition of curve
• Describing the shape of curves by calculus



γ(t) = (x(t), y(t))

Parameterized Curves
Intuition:

• A particle is moving in space

• At time  its position is given by t



Example
Explicit curve/circle in 2D



• Smoothly “interpolate” between a set of points  
• Widely used in design (e.g., in your Powerpoint)

Pi

Application: Bezier Curves, Splines

s(1)s(0)

s(t)



Set of points that locally looks like a line.

One-dimensional “Manifold”



Negative Examples of Manifolds

“Cusp”



Tangent
•  is the tangent vector of the 

curve at 
γ′ (t) = (x′ (t), y′ (t)) ∈ ℝ2

t



Quiz: Tangent of a Circle
•  is the tangent vector of the 

curve at 
γ′ (t) = (x′ (t), y′ (t)) ∈ ℝ2

t

γ′ (t)
γ(t) = (cos(t), sin(t))



Quiz: Tangent of a Circle
•  is the tangent vector of the 

curve at 
γ′ (t) = (x′ (t), y′ (t)) ∈ ℝ2

t

γ′ (t)
γ(t) = (cos(t), sin(t))

γ′ (t) = (−sin(t), cos(t))

γ′ (t) - direction of movement

∥γ′ (t)∥ - speed of movement



Arc Length



Parameterization by Arc Length

Constant-speed parameterization

http://www.planetclegg.com/projects/WarpingTextToSplines.html

γ̄(s) = γ(t(s))



Moving Frame in 2D

https://en.wikipedia.org/wiki/Frenet%E2%80%93Serret_formulas



Lemma

d
ds

⟨u(s), v(s)⟩ = ⟨
du
ds

, v⟩ + ⟨u,
dv
ds

⟩



Derivation of ∥T(s)∥ ≡ 1

(See notes)



Turtles All The Way Down

Use coordinates from the curve to 
express its shape!

On the board:

https://en.wikipedia.org/wiki/Frenet%E2%80%93Serret_formulas



(See notes)



(See notes)



Perspective of Normal Change

• Curvature indicates how much the normal changes in 
the direction tangent to the curve

• Curvature is always positive

N′ (s) = − κ(s)T(s)

δN



Radius of Curvature

https://www.quora.com/What-is-the-base-difference-between-radius-of-curvature-and-radius-of-gyration



Invariance is Important

Fundamental theorem of the 
local theory of plane curves: 

 characterizes a planar 
curve up to rigid motion.

κ(s)



3D Curves
• Osculating Plane

34

The Osculating Plane

The plane determined by 
the unit tangent and normal 
vectors T(s) and N(s) is 
called the osculating plane
at s
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Self-reading 



The Binormal Vector
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The Binormal Vector

For points s, s.t. κ(s) ≠ 0, the 
binormal vector B(s) is defined 
as:

B(s) = T(s) × N(s)

The binormal vector defines the 
osculating plane 
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• Already used it to define the curvature:

• Orthogonal to  (the same derivation as 2D curve)

• Since along the direction of , also orthogonal to 

T′ (s) = κ(s)N(s)

T(s)

N(s)
B(s)

T′ (s)

Unit vector

Self-reading 



N′ (s)

We know: =1
From the lemma  

We know: 
From the lemma  
From the definition   

 

⟨N(s), N(s)⟩
⟶ ⟨N′ (s), N(s)⟩ = 0

⟨N(s), T(s)⟩ = 0
⟶ ⟨N′ (s), T(s)⟩ = ⟨−N(s), T′ (s)⟩

⟶ κ(s) = ⟨N(s), T′ (s)⟩
⟶ ⟨N′ (s), T(s)⟩ = − κ(s)

(Derivative orthogonal to itself)

Self-reading 



The Torsion
• From previous slide:

The remaining component of  is along  
direction:

 

Now we can express  as 

                  

⟨N′ (s), N(s)⟩ = 0
⟨N′ (s), T(s)⟩ = − κ(s)

N′ (s) B(s)

⟨N′ (s), B(s)⟩ = τ(s)

N′ (s)

N′ (s) = − κ(s)T(s) + τ(s)B(s)

Self-reading 



Perspective of Normal Change

• Curvature indicates how much the normal changes in 
the direction tangent to the curve

• Torsion indicates how much normal changes in the 
direction orthogonal to the osculating plane of the 
curve

• Curvature is always positive but torsion can be 
negative

N′ (s) = − κ(s)T(s) + τ(s)B(s)

Self-reading 



B′ (s)
We know: 
From the lemma  

We know: , 
From the lemma  

From the lemma  
 

Now we express  as:

⟨B(s), B(s)⟩ = 1
⟶ ⟨B′ (s), B(s)⟩ = 0

⟨B(s), T(s)⟩ = 0 ⟨B(s), N(s)⟩ = 0
⟶

⟨B′ (s), T(s)⟩ = ⟨−B(s), T′ (s)⟩ = ⟨−B(s), κ(s)N(s)⟩ = 0
⟶

⟨B′ (s), N(s)⟩ = ⟨−B(s), N′ (s)⟩ = − τ(s)

B′ (s)
B′ (s) = − τ(s)N(s)

Self-reading 



Frenet Frame:  Curves in ℝ3

• Binormal:  
• Curvature:  In-plane motion
• Torsion:  Out-of-plane motion

Self-reading 



Fundamental theorem of the 
local theory of space curves: 

Curvature and torsion 
characterize a 3D curve up to 

rigid motion.



Summary
• Curve is a map from an interval to 

• Tangent describes the moving direction

• The derivative of tangent under arc-length 
parameterization is normal

• Curvature (and torsion) both characterize the change of 
normal direction, uniquely describing the shape of a curve 
(up to rigid transformation)

• Tangent, normal, and binormal form a moving frame 
(Frenet frame)

ℝn


