

Machine Learning meets Geometry

L1: Introduction

Hao Su

• Syllabus

Logistics

• Curve Theory

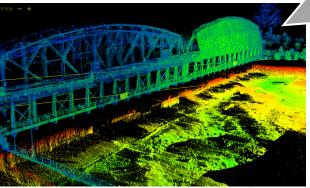
Robotics

Robotics

Augmented Reality

Robotics

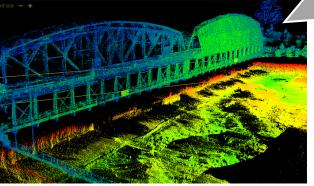
Augmented Reality



Autonomous driving

Robotics

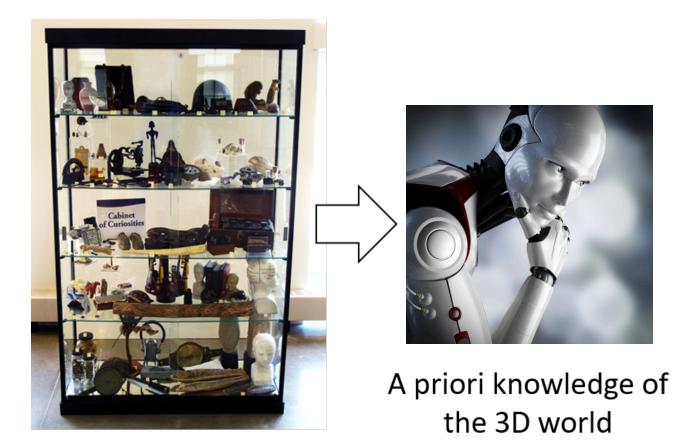
Augmented Reality



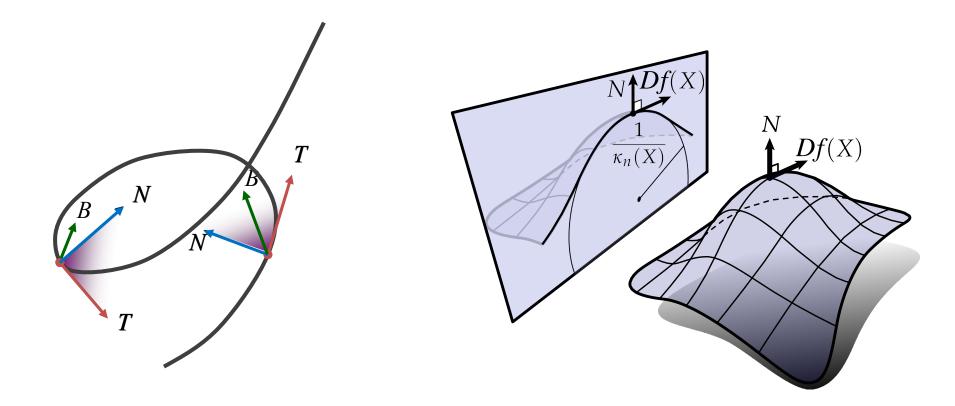
Autonomous driving

Medical Image Processing

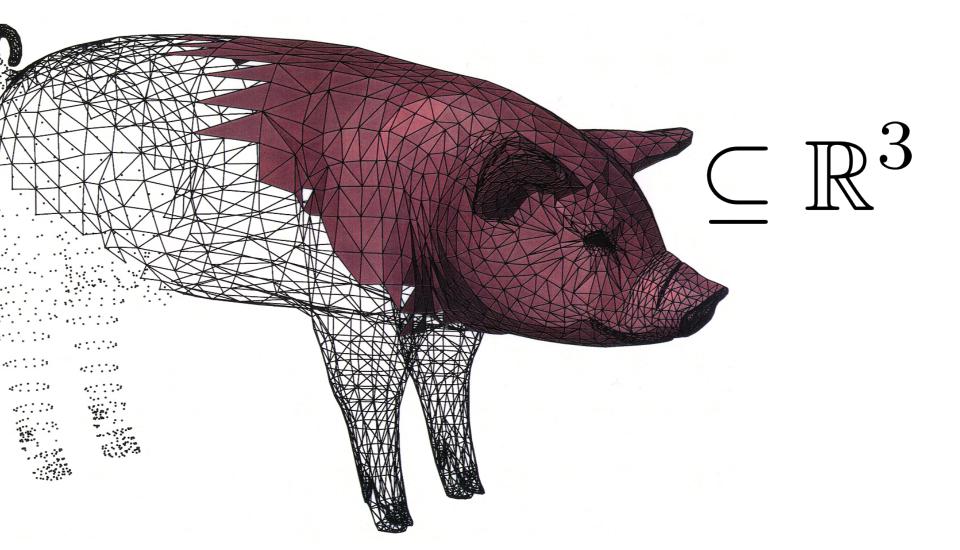
Use Machine Learning to Understand Geometries



• Geometry theories

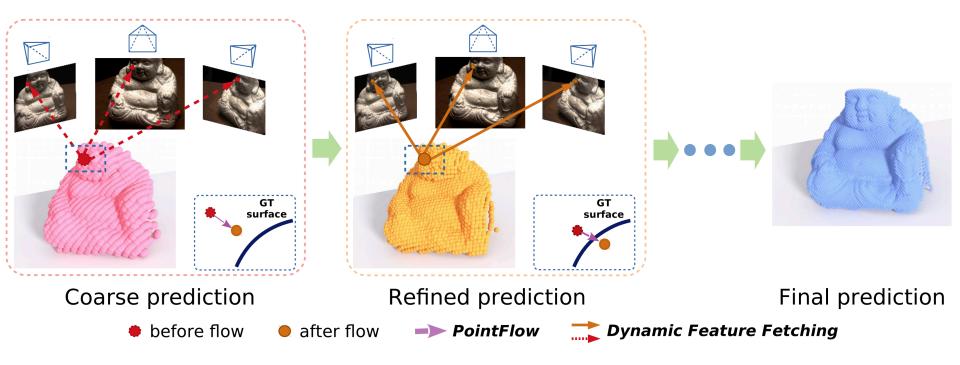


Computer Representation of Geometries

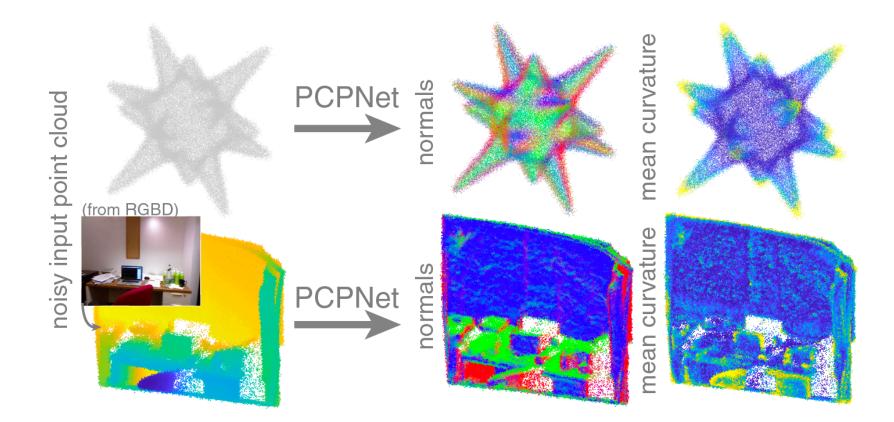


• Sensing: 3D reconstruction from a single image

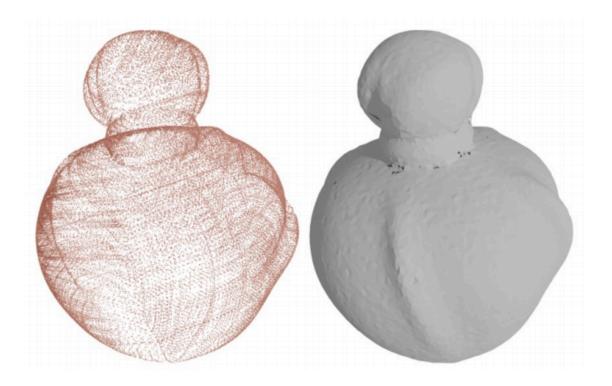
Sensing: 3D reconstruction from multiple views



Geometry Processing: Local geometric property estimation

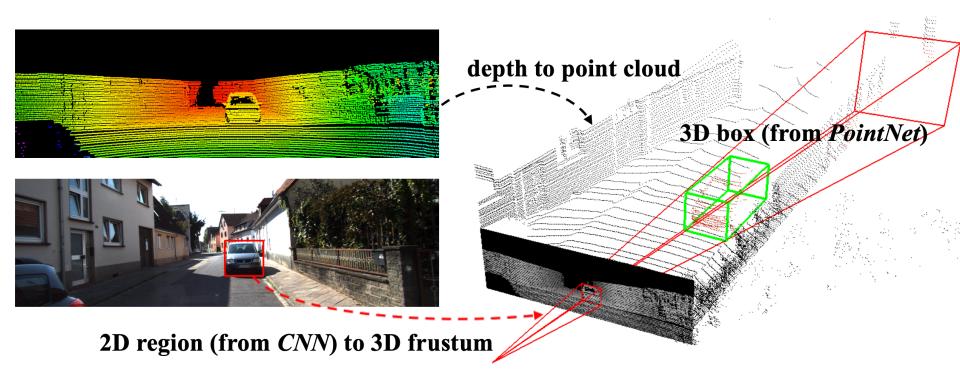


Geometry Processing: Surface reconstruction

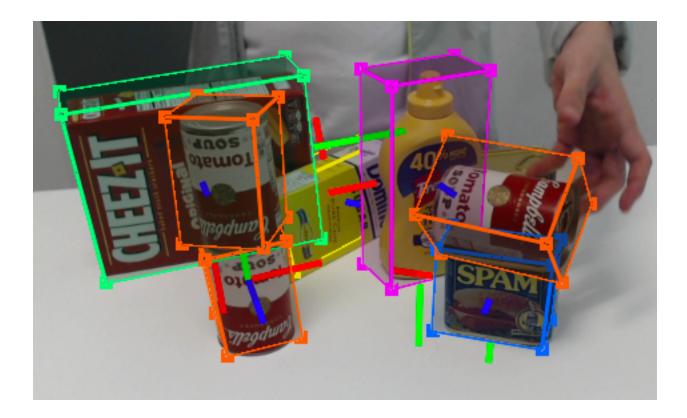


Recognition: Object classification

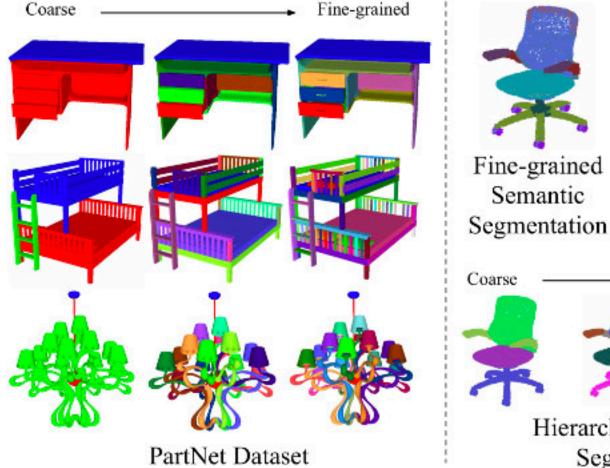
Recognition: Object detection



Recognition: 6D pose estimation



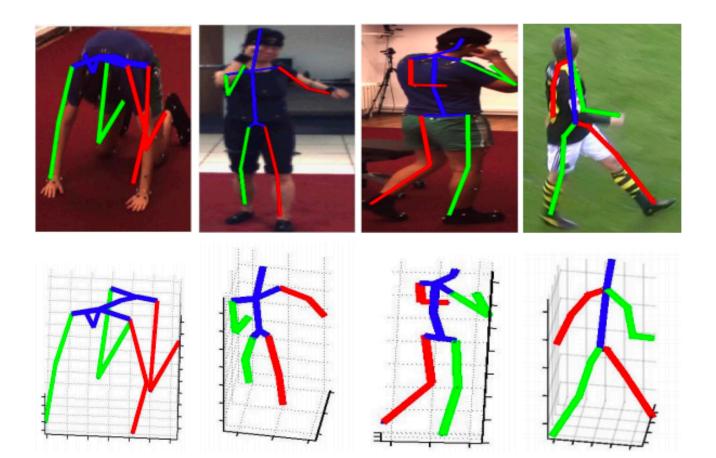
Recognition: Segmentation



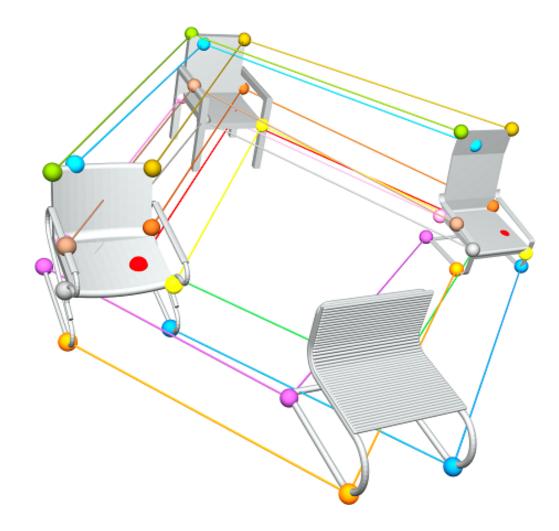
Instance Segmentation

Hierarchical Semantic Segmentation

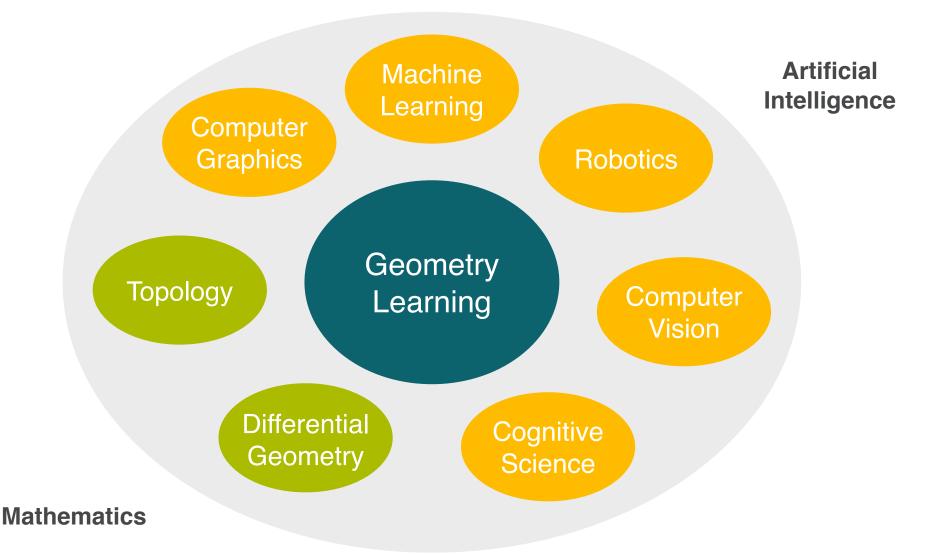
Recognition: Human pose estimation



Relationship Analysis: Shape correspondences



Highly Interdisciplinary Field



Course Logistic

Instructors

Instructor: Hao Su

TA: Jiayuan Gu

TA: Xiaoshuai Zhang



Teaching Goal

- State-of-the-art
 - Enable you to read and replicate recent 3D papers in top CV/CG conferences (not industry job oriented)
- Hands-on
 - Heavy programming assignments to exercise what are taught in class
- Foundational
 - Theory problems are **proof based**
 - Programming problems ask you to implement lowlevel modules from scratch

Pre-requisite: Technique

- Skilled in Linear Algebra
- Familiar with Multi-variable Calculus
- Familiar with Probability and Numerical Methods
- **Strong** programming skills
 - Familiar with Linux Toolchain
 - Familiar with python, numpy, and pytorch
- Course/project experiences in computer vision or deep learning

Background Check

- On Piazza now (HW0)
 - Visible to enrolled and waitlist students
- 5 points in your final grade
- Mandatory! We will not grade your subsequent homeworks without seeing your HW0.
- If you are in the waitlist and intend to enroll, you need to submit HW0 by this deadline
- Due: 1/12/2022

Pre-requisite: Resources

This course requires deep learning resources (to run a 3D recognition challenge)

 Unfortunately, we do not have computational resources to support ~50 students

Please find the server with the following configuration:
 >= 50G disk space
 >= 1 GPU with 10G memory

Assignments

- 4 assignments and 1 final project
 - HW0: due week 2 (5 points)
 - HW1: due week 4 (20 points)
 - HW2: due week 6 (20 points)
 - HW3: due week 8 (20 points)
 - Final project: final week (35 points)
 - No mid-term/final exams
- Extra credit for participation 5% (ask/answer questions in class, attend office hours)
- HW0-HW3: theory problems + programming
- Late policy: 15% grade reduction for each 12 hours late. No acceptance 72 hours after the due time.

3D Recognition Competition

- HW0-HW3: build individual modules
- Final project: integrate modules and test new ideas.
 Score by performance ranking. Online evaluation system will be set up
- We estimate >=15 hrs per week (out of class) solid time commitment
- We allow you to see homework (through Piazza) and attend the competition *even if you audit the course*

Course Resources

- Course website: <u>https://haosulab.github.io/ml-meets-geometry/WI22/index.html</u> (Google "Hao Su" → Prof. Homepage → Teaching → this link)
 - Collaboration policy
 - Lecture slides
 - Office hour and location
- Piazza
 - Homework/Solution release
 - Discussions

Office Hour

• See course website

Questions?

Curve

- Definition of curve
- Describing the shape of curves by calculus

Parameterized Curves

Intuition:

- A particle is moving in space
- At time *t* its position is given by

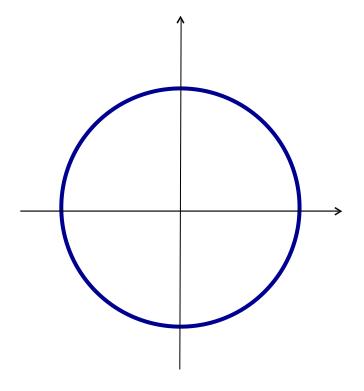
 $\gamma(t) = (x(t), y(t))$

Example

Explicit curve/circle in 2D

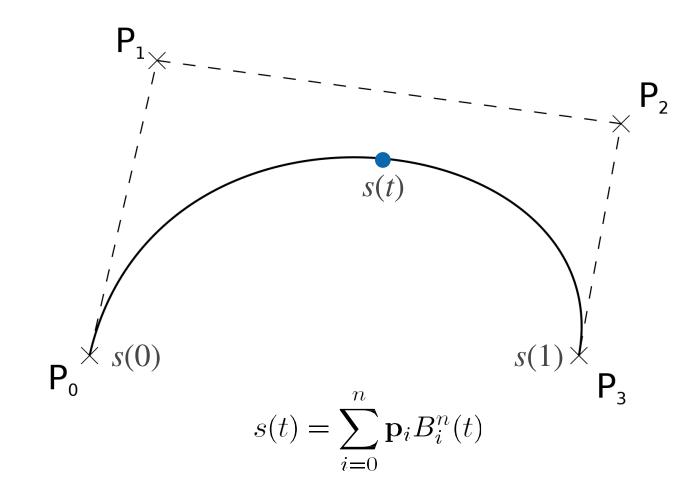
$$\mathbf{p} : \mathbb{R} \to \mathbb{R}^2$$
$$t \mapsto \mathbf{p}(t) = (x(t), y(t))$$

$$\mathbf{p}(t) = r\left(\cos(t), \sin(t)\right)$$
$$t \in [0, 2\pi)$$



Application: Bezier Curves, Splines

- Smoothly "interpolate" between a set of points P_i
- Widely used in design (e.g., in your Powerpoint)

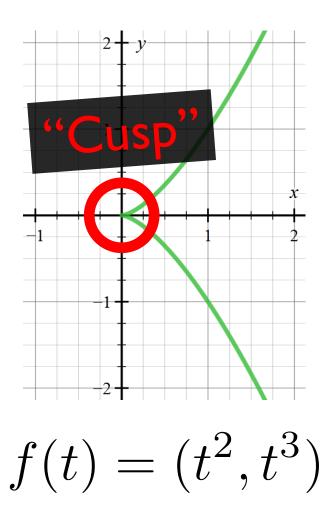


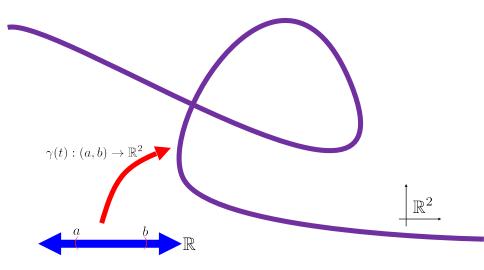
One-dimensional "Manifold"



Set of points that locally looks like a line.

Negative Examples of Manifolds



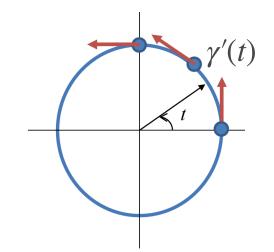


Tangent

• $\gamma'(t) = (x'(t), y'(t)) \in \mathbb{R}^2$ is the tangent vector of the curve at t

Quiz: Tangent of a Circle

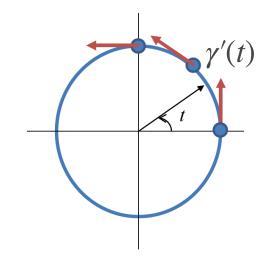
• $\gamma'(t) = (x'(t), y'(t)) \in \mathbb{R}^2$ is the tangent vector of the curve at t



 $\gamma(t) = (\cos(t), \sin(t))$

Quiz: Tangent of a Circle

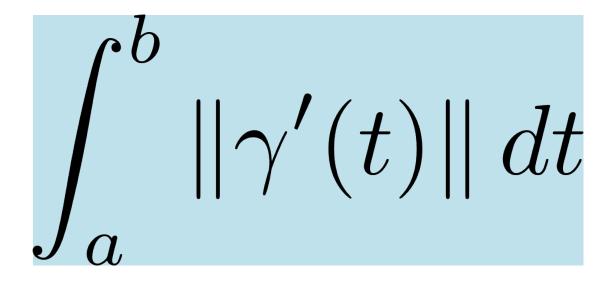
• $\gamma'(t) = (x'(t), y'(t)) \in \mathbb{R}^2$ is the tangent vector of the curve at t



$$\gamma(t) = (\cos(t), \sin(t))$$
$$\gamma'(t) = (-\sin(t), \cos(t))$$

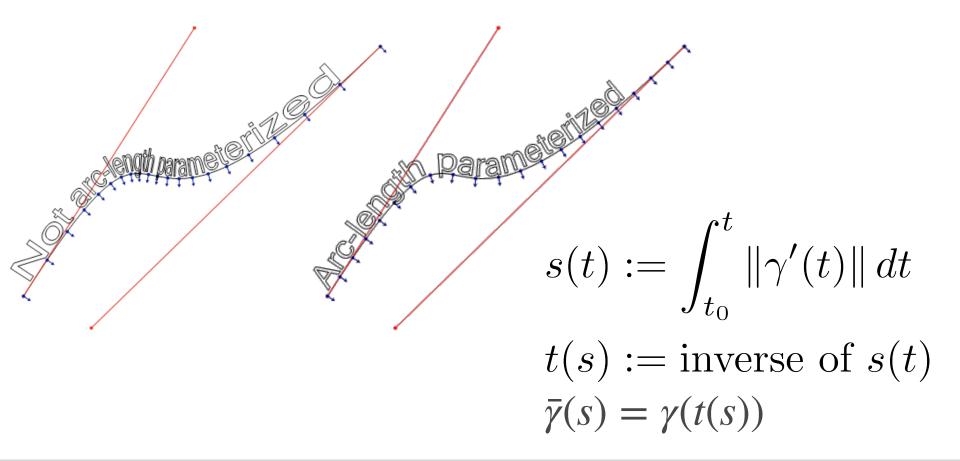
- $\gamma'(t)$ direction of movement
- $\|\gamma'(t)\|$ speed of movement

Arc Length



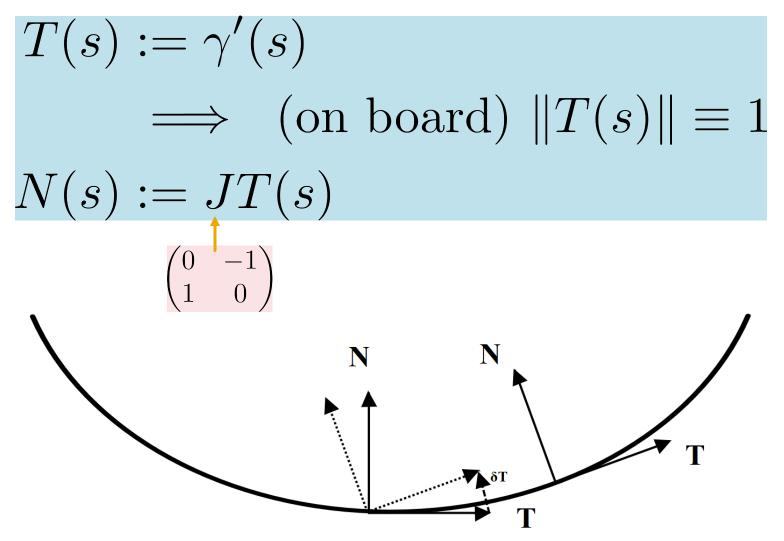
Parameterization by Arc Length

http://www.planetclegg.com/projects/WarpingTextToSplines.html

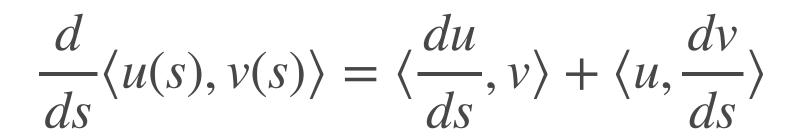


Constant-speed parameterization

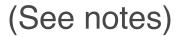
Moving Frame in 2D



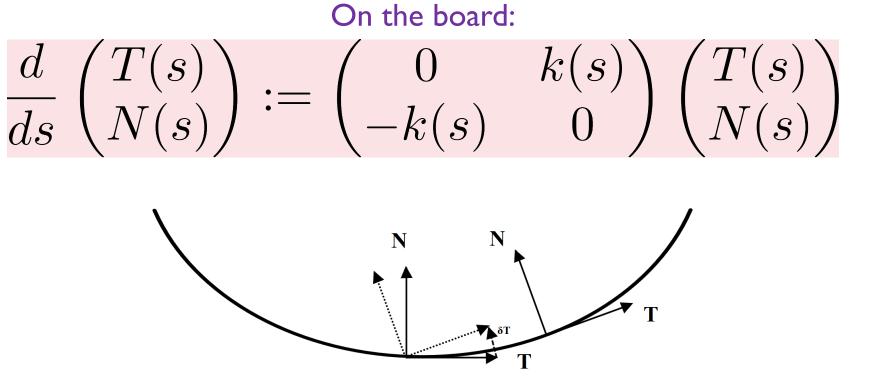
Lemma



Derivation of $||T(s)|| \equiv 1$



Turtles All The Way Down



https://en.wikipedia.org/wiki/Frenet%E2%80%93Serret_formulas

Use coordinates from the curve to express its shape!

 $\frac{d}{ds} \begin{pmatrix} T(s) \\ N(s) \end{pmatrix} := \begin{pmatrix} 0 & k(s) \\ -k(s) & 0 \end{pmatrix} \begin{pmatrix} T(s) \\ N(s) \end{pmatrix}$

(See notes)

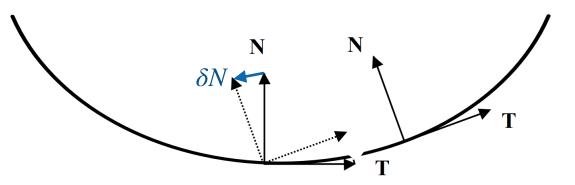
 $\frac{d}{ds} \begin{pmatrix} T(s) \\ N(s) \end{pmatrix} := \begin{pmatrix} 0 & k(s) \\ -k(s) & 0 \end{pmatrix} \begin{pmatrix} T(s) \\ N(s) \end{pmatrix}$

(See notes)

Perspective of Normal Change

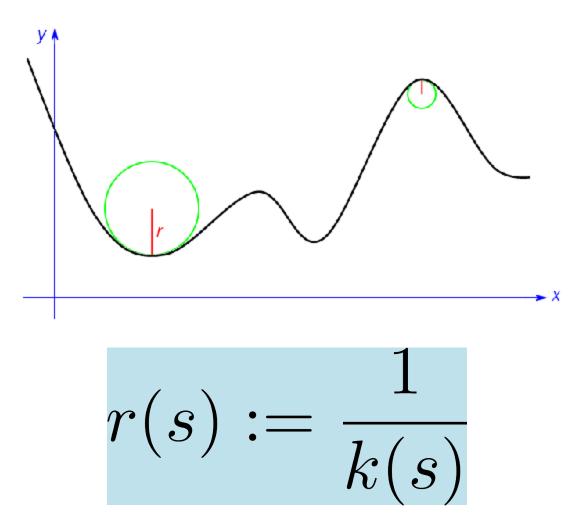
$$\mathbf{N}'(s) = -\kappa(s)\mathbf{T}(s)$$

 Curvature indicates how much the normal changes in the direction tangent to the curve



• Curvature is always positive

Radius of Curvature



https://www.quora.com/What-is-the-base-difference-between-radius-of-curvature-and-radius-of-gyration

Invariance is Important

Fundamental theorem of the local theory of plane curves:

 $\kappa(s)$ characterizes a **planar curve** up to rigid motion.

3D Curves

Osculating Plane

The plane determined by the unit tangent and normal vectors *T*(*s*) and *N*(*s*) is called the *osculating plane* at *s*

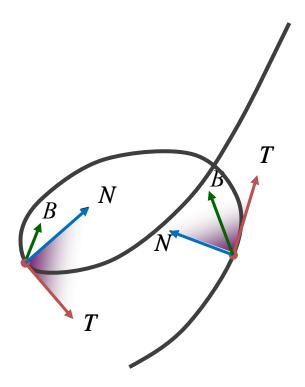


The Binormal Vector

For points *s*, s.t. $\kappa(s) \neq 0$, the *binormal vector* **B**(*s*) is defined as:

$$\boldsymbol{B}(s) = \boldsymbol{T}(s) \times \boldsymbol{N}(s)$$

The binormal vector defines the osculating plane



T′(*s*)

• Already used it to define the curvature:

$$\mathbf{T}'(s) = \kappa(s) \mathbf{N}(s)$$

$$\uparrow$$
Unit vector

- Orthogonal to $\mathbf{T}(s)$ (the same derivation as 2D curve)
- Since along the direction of N(s), also orthogonal to B(s)

$\mathbf{N}'(s)$

We know: $\langle N(s), N(s) \rangle = 1$ From the lemma $\longrightarrow \langle N'(s), N(s) \rangle = 0$

(Derivative orthogonal to itself)

We know: $\langle \mathbf{N}(s), \mathbf{T}(s) \rangle = 0$ From the lemma $\longrightarrow \langle \mathbf{N}'(s), \mathbf{T}(s) \rangle = \langle -\mathbf{N}(s), \mathbf{T}'(s) \rangle$ From the definition $\longrightarrow \kappa(s) = \langle \mathbf{N}(s), \mathbf{T}'(s) \rangle$ $\longrightarrow \langle \mathbf{N}'(s), \mathbf{T}(s) \rangle = -\kappa(s)$

The Torsion

• From previous slide: $\langle \mathbf{N}'(s), \mathbf{N}(s) \rangle = 0$ $\langle \mathbf{N}'(s), \mathbf{T}(s) \rangle = -\kappa(s)$

The remaining component of $\mathbf{N}'(s)$ is along $\mathbf{B}(s)$ direction:

$$\langle \mathbf{N}'(s), \mathbf{B}(s) \rangle = \tau(s)$$

Now we can express N'(s) as

$$\mathbf{N}'(s) = -\kappa(s)\mathbf{T}(s) + \tau(s)\mathbf{B}(s)$$

Perspective of Normal Change

$$\mathbf{N}'(s) = -\kappa(s)\mathbf{T}(s) + \tau(s)\mathbf{B}(s)$$

- Curvature indicates how much the normal changes in the direction tangent to the curve
- Torsion indicates how much normal changes in the direction orthogonal to the osculating plane of the curve
- Curvature is always positive but torsion can be negative

B′(*s*)

We know: $\langle \mathbf{B}(s), \mathbf{B}(s) \rangle = 1$ From the lemma $\longrightarrow \langle \mathbf{B}'(s), \mathbf{B}(s) \rangle = 0$

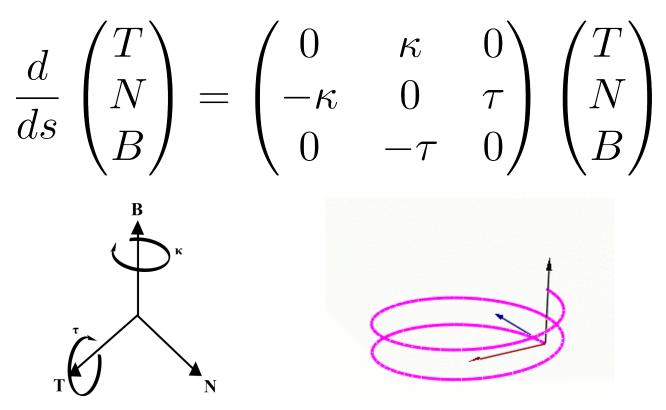
We know: $\langle \mathbf{B}(s), \mathbf{T}(s) \rangle = 0$, $\langle \mathbf{B}(s), \mathbf{N}(s) \rangle = 0$ From the lemma \longrightarrow $\langle \mathbf{B}'(s), \mathbf{T}(s) \rangle = \langle -\mathbf{B}(s), \mathbf{T}'(s) \rangle = \langle -\mathbf{B}(s), \kappa(s) \mathbf{N}(s) \rangle = 0$ From the lemma \longrightarrow $\langle \mathbf{B}'(s), \mathbf{N}(s) \rangle = \langle -\mathbf{B}(s), \mathbf{N}'(s) \rangle = -\tau(s)$

Now we express $\mathbf{B}'(s)$ as:

$$\mathbf{B}'(s) = -\tau(s)\mathbf{N}(s)$$

Frenet Frame: Curves in \mathbb{R}^3

- Binormal:
 - Curvature: In-plane motion
 - Torsion: Out-of-plane motion



Fundamental theorem of the local theory of space curves:

Curvature and torsion characterize a 3D curve up to rigid motion.

Summary

- Curve is a map from an interval to \mathbb{R}^n
- Tangent describes the moving direction
- The derivative of tangent under arc-length parameterization is normal
- Curvature (and torsion) both characterize the change of normal direction, uniquely describing the shape of a curve (up to rigid transformation)
- Tangent, normal, and binormal form a moving frame (Frenet frame)