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Surface Reconstruction
• Explicit Algorithms
• Implicit Algorithms



Surface Reconstruction Task

• Input: point cloud (with or without normals)

• Output: triangle mesh
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Two Basic Families
• Explicit algorithms
- Directly connect the input points with 

triangles, e.g., 
‣ ball-pivoting algorithm
‣ extrinsic-intrinsic ratio algorithm

• Implicit algorithms
- Approximate the input points by implicit 

field functions 
- Then extract iso-surfaces, e.g., 
‣ poisson surface reconstruction
‣ reconstruction with RBF

S = {x : F(x) = 0}
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Some Desired Properties 
of the Algorithm

• Fast: The input point cloud may be large. We expect 
the computation to be fast.

• Robust: May recover the underlying surface structure 
even when the input point cloud is noisy

• Output mesh is desired to satisfy some geometric 
constraints

5



Geometric Constraint: Manifold
• A mesh is manifold if it does not contain:
- self intersection
- non-manifold edge (has more than 2 incident faces)
- non-manifold vertex (one-ring neighborhood is not 

connected after removing the vertex)

• A useful property for many subsequent geometry 
processing pipelines
- e.g., to add texture maps and …
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Geometric Constraint: Watertight

• A manifold mesh is watertight if 
each edge has exactly two incident 
faces, i.e., no boundary edges.

• Defines the interial, hence the 
volume of a solid object

• Required by many physical-
simulation algorithms:
- Estimate mass from density
- Collision between objects
- Force simulation
- …

https://transmagic.com/wp-content/uploads/2016/05/watertight-solid-3d-cad-models-transmagic.png
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Surface Reconstruction
• Explicit Algorithms
- Ball-Pivoting Algorithm
- Extrinsic-Intrinsic Ratio Algorithm

• Implicit Algorithms



Ball-Pivoting Algorithm
• Input: a point cloud and a hyper-parameter ρ

9 http://www.banterle.com/francesco/courses/
2017/be_3drec/slides/lecture16.pdf



Ball-Pivoting Algorithm
• Input: a point cloud and a hyper-parameter 
• Assumption: 
- input points are dense enough that a ball of radius 

 cannot pass through the surface without touching 
the points.

ρ

ρ

10 http://www.banterle.com/francesco/courses/
2017/be_3drec/slides/lecture16.pdf



Ball-Pivoting Algorithm
• Input: a point cloud and a hyper-parameter 
• Assumption: 
- input points are dense enough that a ball of radius 

 cannot pass through the surface without touching 
the points.

• Principle for face formation:
- three points form a triangle if a ball of radius  

touches them without containing any other points. 

ρ

ρ

ρ

11 http://www.banterle.com/francesco/courses/
2017/be_3drec/slides/lecture16.pdf



Ball-Pivoting Algorithm (2D)
• Starting with a corner point and a -ball
• Verify potential edges (triangles) in the 

-neighborhood by the previous principle

ρ
ρ

12 http://www.banterle.com/francesco/courses/
2017/be_3drec/slides/lecture16.pdf



Ball-Pivoting Algorithm (2D)
• The ball pivots around an edge (triangles) until it 

touches another point, forming another triangle. 

13 http://www.banterle.com/francesco/courses/
2017/be_3drec/slides/lecture16.pdf



Ball-Pivoting Algorithm (2D)
• The process continues until all reachable edges have 

been tried
• Then starts from another seed triangle, until all points 

have been considered.

14 http://www.banterle.com/francesco/courses/
2017/be_3drec/slides/lecture16.pdf



Radius  Mattersρ
• Appropriate radius (a)
• Radius too small: some of the edges will not be 

created, leaving holes. (b)
• Large radius: when the curvature of the manifold is 

larger than , some of the points will not be reached 
by the pivoting ball, and features will be missed. (c)

1/ρ

15 http://www.banterle.com/francesco/courses/
2017/be_3drec/slides/lecture16.pdf



Radius  Mattersρ
• Appropriate radius (a)
• Radius too small: some of the edges will not be 

created, leaving holes. (b)
• Large radius: when the curvature of the manifold is 

larger than , some of the points will not be reached 
by the pivoting ball, and features will be missed. (c)

1/ρ

16 http://www.banterle.com/francesco/courses/
2017/be_3drec/slides/lecture16.pdf



Radius  Mattersρ
• Appropriate radius (a)
• Radius too small: some of the edges will not be 

created, leaving holes. (b)
• Large radius: some of the points will not be reached 

(when the curvature of the manifold is larger than )
(c)

1/ρ

17 http://www.banterle.com/francesco/courses/
2017/be_3drec/slides/lecture16.pdf



Iterative Approach
• Using multiple radius, iteratively connects the points.
• Small Radius capture high frequencies.
• Large Radius close holes.  

18 http://www.banterle.com/francesco/courses/
2017/be_3drec/slides/lecture16.pdf



Ambiguous Structures
• Sometimes, defining a rule for structure estimation  is 

hard
- e.g., we tend to interpret the following point cloud 

as two disjoint ellipses; however, no  value allows 
us to separate them

ρ

19 Liu et al., “Meshing Point Clouds with Predicted 
Intrinsic-Extrinsic Ratio Guidance.”, ECCV 2020



Ambiguous Structures
• Traditional Rule-based methods cannot handle 

ambiguous structures (e.g., thin structures & adjacent 
parts).

20 Liu et al., “Meshing Point Clouds with Predicted 
Intrinsic-Extrinsic Ratio Guidance.”, ECCV 2020



Review: Learning-Based Method
• Train a network to filter out incorrect connections.
• Utilize the Intrinsic-Extrinsic Ratio to guide the 

training.

21 Liu et al., “Meshing Point Clouds with Predicted 
Intrinsic-Extrinsic Ratio Guidance.”, ECCV 2020



Ambiguous Structures

22

Input Poisson BPA Ours

Liu et al., “Meshing Point Clouds with Predicted 
Intrinsic-Extrinsic Ratio Guidance.”, ECCV 2020



Pros & Cons
• Pros:
- Linear complexity (fast)
- No dependence on normals 

• Cons:
- Can lead to non-manifold situations, and no water-

tight guarantee

• Regarding robustness:
- Learning can improve the robustness
- However, current learning-based method would still 

not work when the sampling density is low
23



Surface Reconstruction
• Explicit Algorithms
• Implicit Algorithms
- RBF implicit function estimation
- Marching cube



Implicit Field Function
• Interior: 
• Exterior: 
• Surface:  (zero set, zero iso-surface)
• Example implementation: 
- SDF: distance to the surface

F(x, y, z) < 0
F(x, y, z) > 0
F(x, y, z) = 0

F(x, y, z) =

25 Park et al., “Deepsdf: Learning continuous signed distance 
functions for shape representation.”, CVPR 2019



Implicit Meshing Algorithm
• Two basic steps:
1.Estimate an implicit field function from data
2.Extract the zero iso-surface

26 http://graphics.stanford.edu/courses/cs468-12-spring/
LectureSlides/04_Surface_Reconstruction.pdf



Implicit Meshing Algorithm
• Two basic steps:
1.  Estimate an implicit field function from data
2.  Extract the zero iso-surface

27 http://graphics.stanford.edu/courses/cs468-12-spring/
LectureSlides/04_Surface_Reconstruction.pdf



Radial Basis Functions 
• Radial basis functions (RBF) : function value 

depends only on the distance from a center point  

• Use a weighted sum of radial basis functions to 
approximate the shape: 

ϕc(x)
c
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ϕc(x) = ϕ(∥x − c∥)

f(x) =
n

∑
i=1

ωiϕ (∥x − xi∥) + p(x)

http://www.banterle.com/francesco/courses/
2017/be_3drec/slides/lecture16.pdf

where  is a polynomial of low degreep



Constraints: Avoiding Non-Trivial 
Solutions
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f (xi) = 0

f (xi + λn i) = λ

f (xi − λn i) = − λ

http://www.banterle.com/francesco/courses/
2017/be_3drec/slides/lecture16.pdf

• Only force input points  to have zero value 
 is not enough, it may get the trivial solution 

• Use normal to add off-surface points. 

xi
f (xi) = 0
f(x) ≡ 0



Consistent Normals are Required
• We just assumed consistent normals 

• Normal is typically required to build watertight meshes

• However, obtaining consistent normal orientation is 
non-trivial (discussions deferred to later).

30
http://www.banterle.com/francesco/courses/

2017/be_3drec/slides/lecture16.pdf
https://trecs.se/MöbiusStrip.php



Estimate Parameters
• Variables:
-  variables on  (RBF coef.) and  

(polynomial coef.)
• Solve a linear system of  equations
- : from the point, inside, and outside 
- : additional constraints to guarantee the 

smoothness and integrability of 

n + l ωi ci

3n + l
3n
l

f
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Implementation Details

• Triharmonic basis functions:  
- Need its extrapolation ability
- Should not use RBF with compact or local support 

(e.g., Gaussian density)
• Polynomial: third-order is practically good

ϕ(r) = r3

32 http://www.banterle.com/francesco/courses/
2017/be_3drec/slides/lecture16.pdf



Implementation Details
• Do not need to use all the input data points as RBF 

centers
- Use a greedy algorithm to select a subset of points

• Noisy data
- Exact interpolation?
- Treat the linear equation as solving a linear square 

problem and add a smoothness term

33 Carr, Jonathan C., et al. "Reconstruction and representation 
of 3D objects with radial basis functions."   2001



More than RBF
• Kazhdan M, Bolitho M, Hoppe H. “Poisson surface 

reconstruction.” ESGP, 2006.
- Robust to noise, adapt to the sampling density
- Over-smoothing    

• Kazhdan M, Hoppe H. “Screened poisson surface 
reconstruction.” ToG, 2013.
- Sharper reconstruction, faster
- But it assumes clean data 

34 http://www.banterle.com/francesco/courses/
2017/be_3drec/slides/lecture16.pdf



Implicit Meshing Algorithm
• Two basic steps:
1.  Estimate an implicit field function from data
2.  Extract the zero iso-surface

35 http://graphics.stanford.edu/courses/cs468-12-spring/
LectureSlides/04_Surface_Reconstruction.pdf

Input: a signed distance field
 (Implicitly assumed knowing the 
inside/outside of the shape, often 
needs to be estimated with 
normal information)



Classical Solution:
2D Marching Square

36 https://en.wikipedia.org/wiki/Marching_squares



Classical Solution:
2D Marching Square

37 https://en.wikipedia.org/wiki/Marching_squares



Classical Solution:
3D Marching Square

•  cases
• The first published version exploits rotation and 

inversion, and only considers 15 unique cases:

28 = 256

38 http://graphics.stanford.edu/courses/cs468-12-spring/
LectureSlides/04_Surface_Reconstruction.pdf



Ambiguity
• Ambiguity leads to holes:

39 http://graphics.stanford.edu/courses/cs468-12-spring/
LectureSlides/04_Surface_Reconstruction.pdf



Solution to Ambiguity
• Considering more cases in the look-up table by 

watching larger context:

40 Chernyaev et al., “Marching cubes 33: Construction of 
topologically correct isosurfaces.”, 1995



Comparison

41

Explicit meshing
(e.g., ball-pivoting)

Implicit meshing
(e.g., RBF, Poisson)

Sensitive 
to normals No Yes

Watertight 
manifold No Yes, in most cases

Complexity Linear
• Large-scale equations to 

estimate implicit function 
• Marching cubes 
• Dense voxelization



Use Neural Network to 
Approximate Implicit Field Function

42 Park et al., “DeepSDF: Learning continuous signed distance
 functions for shape representation.”, CVPR 2019

• (a) use the network to overfit a single shape
• (b) use a latent code to represent a shape, so that the 

network can be used for multiple shapes



Consistent Orientation?

• Require the ground-truth signed implicit functions 
during training (e.g., signed distance, occupancy)

• However, 3D raw data, such as point cloud or triangle 
soup, are not necessarily consistently oriented
- e.g., getting normal orientation for ShapeNet data is 

not easy
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Recent Work: Sign Agnostic Learning 
of Shapes from Raw Data 

• Unsigned distance is easy to obtain
- Distance to the point cloud & triangle soup 

• Learn signed distance from unsigned distance 
groundtruth
- Require a special loss function

44 Atzmon et al., “Sal: Sign agnostic learning of
 shapes from raw data.”, CVPR 2020



Sign Agnostic Learning 

• : input raw data (e.g., a point cloud or a triangle 
soup)

• : learned signed function

• : distribution of the training samples defined by 

• : some unsigned distance measure to 

• :  a similarity function 

χ ⊂ ℝ3

f(x; θ) : ℝ3 × ℝm → ℝ
Dχ χ
hχ(x) χ
τ : ℝ × ℝ+ → ℝ

45

loss(θ) = 𝔼x∼Dχ
τ (f(x; θ), hχ(x))

Atzmon et al., “Sal: Sign agnostic learning of
 shapes from raw data.”, CVPR 2020



Sign Agnostic Learning 

• : some unsigned distance measure to 

• :  a similarity function 

hχ(x) χ

τ : ℝ × ℝ+ → ℝ

46

loss(θ) = 𝔼x∼Dχ
τ (f(x; θ), hχ(x))

τℓ(a, b) = ∥a | − b |ℓ

Atzmon et al., “Sal: Sign agnostic learning of
 shapes from raw data.”, CVPR 2020



Two Local Minima 

•  is an unsigned function that resembles 
•  is a signed function and  resembles  
• We prefer the second case to use marching cube

f hχ(x)
f | f | hχ(x)

47

loss(θ) = 𝔼x∼Dχ
τ (f(x; θ), hχ(x))

Atzmon et al., “Sal: Sign agnostic learning of
 shapes from raw data.”, CVPR 2020



Two Local Minima 

• Pick a special weight initialization  so that
, where  is the 

signed distance function to an -radius sphere
-  if 
-  if 

• Under such an initialization,  is not easy to converge 
to the unsigned local minima.

θ0

f (x; θ0) ≈ φ(∥x∥ − r) φ(∥x∥ − r)
r

f > 0 ∥x∥ > r
f < 0 ∥x∥ < r

f

48 Atzmon et al., “Sal: Sign agnostic learning of
 shapes from raw data.”, CVPR 2020



2D Results

49

Unsigned function
as supervision

Learned signed
function

Atzmon et al., “Sal: Sign agnostic learning of
 shapes from raw data.”, CVPR 2020



Surface Reconstruction Results 
from Raw Data

50

Raw 
Point Cloud

Ball-Pivoting
Algorithm

SAL

Atzmon et al., “Sal: Sign agnostic learning of
 shapes from raw data.”, CVPR 2020


