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Surface Reconstruction
* Explicit Algorithms
* Implicit Algorithms



urface Reconstruction Task

* Input: point cloud (with or without normals

 QOutput: triangle mesh




Two Basic Families

 Explicit algorithms
- Directly connect the input points with
triangles, e.qg.,
> ball-pivoting algorithm
> extrinsic-intrinsic ratio algorithm

* Implicit algorithms
- Approximate the input points by implicit
field functions S = {x : F(x) = 0}
- Then extract iso-surfaces, e.g.,
> poisson surface reconstruction
> reconstruction with RBF




Some Desired Properties
of the Algorithm

» Fast: The input point cloud may be large. We expect
the computation to be fast.

* Robust: May recover the underlying surface structure
even when the input point cloud is noisy

* Output mesh is desired to satisfy some geometric
constraints



Geometric Constraint: Manifold

A mesh is manifold if it does not contain:
- self intersection
- non-manifold edge (has more than 2 incident faces)

- non-manifold vertex (one-ring neighborhood is not
connected after removing the vertex)

self intersection non-manifold vertex non-manifold edge

A useful property for many subsequent geometry
processing pipelines

- e.g., to add texture maps and ...
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Geometric Constraint: Watertight

* A manifold mesh is watertight if
each edge has exactly two incident
faces, i.e., no boundary edges.

* Defines the interial, hence the
volume of a solid object

* Required by many physical-
simulation algorithms:
- Estimate mass from density
- Collision between objects
- Force simulation

https://transmagic.com/wp-content/uploads/2016/05/watertight-solid-3d-cad-models-transmagic.png
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Surface Reconstruction
* Explicit Algorithms

- Ball-Pivoting Algorithm

- Extrinsic-Intrinsic Ratio Algorithm



Ball-Pivoting Algorithm

« Input: a point cloud and a hyper-parameter p

http://www.banterle.com/francesco/courses/
2017/be_3drec/slides/lecture16.pdf



Ball-Pivoting Algorithm

« Input: a point cloud and a hyper-parameter p
* Assumption:

- input points are dense enough that a ball of radius
p cannot pass through the surface without touching
the points.

http://www.banterle.com/francesco/courses/

10 2017/be_3drec/slides/lecture16.pdf



Ball-Pivoting Algorithm

« Input: a point cloud and a hyper-parameter p
* Assumption:
- input points are dense enough that a ball of radius
p cannot pass through the surface without touching
the points.
* Principle for face formation:
- three points form a triangle if a ball of radius p
touches them without containing any other points.

http://www.banterle.com/francesco/courses/
2017/be_3drec/slides/lecture16.pdf
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Ball-Pivoting Algorithm (2D)

. Starting with a corner point and a p-ball

- Verify potential edges (triangles) in the p
-neighborhood by the previous principle

192 http://www.banterle.com/francesco/courses/
2017/be_3drec/slides/lecture16.pdf



Ball-Pivoting Algorithm (2D)

* The ball pivots around an edge (triangles) until it
touches another point, forming another triangle.

13 http://www.banterle.com/francesco/courses/
2017/be_3drec/slides/lecture16.pdf



Ball-Pivoting Algorithm (2D)

* The process continues until all reachable edges have
been tried

» Then starts from another seed triangle, until all points
have been considered.

14 http://www.banterle.com/francesco/courses/
2017/be_3drec/slides/lecture16.pdf



Radius p Matters

* Appropriate radius (a)
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http://www.banterle.com/francesco/courses/
2017/be_3drec/slides/lecture16.pdf



Radius p Matters

* Appropriate radius (a)
» Radius too small: some of the edges will not be
created, leaving holes. (b)
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16 http://www.banterle.com/francesco/courses/
2017/be_3drec/slides/lecture16.pdf



Radius p Matters

* Appropriate radius (a)
» Radius too small: some of the edges will not be
created, leaving holes. (b)

 Large radius: some of the points will not be reached
(when the curvature of the manifold is larger than 1/p)

(c)
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Iterative Approach

« Using multiple radius, iteratively connects the points.
« Small Radius capture high frequencies.
» Large Radius close holes.

18 http://www.banterle.com/francesco/courses/
2017/be_3drec/slides/lecture16.pdf



Ambiguous Structures

« Sometimes, defining a rule for structure estimation is
hard
- e.g., we tend to interpret the following point cloud
as two disjoint ellipses; however, no p value allows
us to separate them

Liu et al., “Meshing Point Clouds with Predicted

19 Intrinsic-Extrinsic Ratio Guidance.”, ECCV 2020



Ambiguous Structures

 Traditional Rule-based methods cannot handle
amblguous structures (e.g., thin structures & adjacent
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Liu et al., “Meshing Point Clouds with Predicted
Intrlnsw Extrinsic Ratio Guidance.”, ECCV 2020
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Review: Learning-Based Method

 Train a network to filter out incorrect connections.
« Utilize the Intrinsic-Extrinsic Ratio to guide the

training.
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Liu et al., “Meshing Point Clouds with Predicted

21 Intrinsic-Extrinsic Ratio Guidance.”, ECCV 2020



Ambiguous Structures

Yy
290

Input Poisson QOurs

‘

Surface 1 Surface 2

Surface 1 Surface 2

20 Liu et al., “Meshing Point Clouds with Predicted
Intrinsic-Extrinsic Ratio Guidance.”, ECCV 2020



Pros & Cons

* Pros:
- Linear complexity (fast)
- No dependence on normals

 Cons:

- Can lead to non-manifold situations, and no water-
tight guarantee

* Regarding robustness:
- Learning can improve the robustness

- However, current learning-based method would still
not work when the sampling density is low
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Surface Reconstruction

* Implicit Algorithms
- RBF implicit function estimation
- Marching cube



Implicit Field Function

Interior: F(x,y,z) <O

Exterior: F(x,y,2) > 0

Surface: F(x,y, z) = 0O (zero set, zero iso-surface)
Example implementation:

- SDF: F(x, v, z) = distance to the surface

25 Park et al., “Deepsdf: Learning continuous signed distance
functions for shape representation.”, CVPR 2019



Implicit Meshing Algorithm

* Two basic steps:
1.Estimate an implicit field function from data
2.Extract the zero iso-surface

) (O
© o o= ___ o
O
26 http://graphics.stanford.edu/courses/cs468-12-spring/

LectureSlides/04_Surface_Reconstruction.pdf



Implicit Meshing Algorithm

* Two basic steps:
1. Estimate an implicit field function from data
2. Extract the zero iso-surface

) (O
© o o= ___ o
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o7 http://graphics.stanford.edu/courses/cs468-12-spring/

LectureSlides/04_Surface_Reconstruction.pdf



Radial Basis Functions

. Radial basis functions (RBF) ¢ .(X): function value
depends only on the distance from a center point ¢

« Use a weighted sum of radial basis functions to
approximate the shape:

Weighted Sum of Radial Basis Transfer Functions

(%) = ¢(|Ix — c|)
@ =) o (Ix-x]l) +p)
=1

Output a

where p is a polynomial of low degree /

Input p

o8 http://www.banterle.com/francesco/courses/
2017/be_3drec/slides/lecture16.pdf



Constraints: Avoiding Non-Trivial
Solutions

- Only force input points X; to have zero value
f( ) = O is not enough it may get the trivial solution

f(x) =

 Use normal to add off-surface points.
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29 2017/be_3drec/slides/lecture16.pdf



Consistent Normals are Required

* We just assumed consistent normals
* Normal is typically required to build watertight meshes

* However, obtaining consistent normal orientation is
non-trivial (discussions deferred to later).

http://www.banterle.com/francesco/courses/
2017/be_3drec/slides/lecture16.pdf
https://trecs.se/MdbiusStrip.php
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Estimate Parameters

* Variables:
- n + [ variables on w; (RBF coef.) and c;
(polynomial coef.)
. Solve a linear system of 3n + [ equations
- 3n: from the point, inside, and outside

- [: additional constraints to guarantee the
smoothness and integrability of f

(7 0)(0) =)= )

A j =¢(|x,~—xj|), i,j=1,...,N,
P,-,jzpj(x,-), i=1,...,N, j=1,...,f.
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Implementation Details

« Triharmonic basis functions: ¢@) = r*
- Need its extrapolation ability

- Should not use RBF with compact or local support
(e.g., Gaussian density)

» Polynomial: third-order is practically good

32 http://www.banterle.com/francesco/courses/
2017/be_3drec/slides/lecture16.pdf



Implementation Details

* Do not need to use all the input data points as RBF
centers

- Use a greedy algorithm to select a subset of points
* Noisy data
- Exact interpolation?

- Treat the linear equation as solving a linear square
problem and add a smoothness term

(2) () ©

Figure 9: (a) Exact fit, (b) medium amount of smoothing applied (the RBF approximates at data points), (c) increased smoothing.

33 Carr, Jonathan C., et al. "Reconstruction and representation
of 3D objects with radial basis functions." 2001



More than RBF

« Kazhdan M, Bolitho M, Hoppe H. “Poisson surface
reconstruction.” ESGP, 2006.

- Robust to noise, adapt to the sampling density
- Over-smoothing

« Kazhdan M, Hoppe H. “Screened poisson surface
reconstruction.” ToG, 2013.

- Sharper reconstruction, faster
- But it assumes clean data
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http://www.banterle.com/francesco/courses/
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Implicit Meshing Algorithm

* Two basic steps:
1. Estimate an implicit field function from data

2. Extract the zero iso-surface

Input: a signed distance field
(Implicitly assumed knowing the
iInside/outside of the shape, often
needs to be estimated with
normal information)

http://graphics.stanford.edu/courses/cs468-12-spring/
LectureSlides/04_Surface_Reconstruction.pdf
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Give every cell a
number based on
which corners are
true/false

Look up the contour
lines in the database
and put them in

the cells

Look at the original
values and use linear
interpolation to
determine a

more accurate position
of all the line end-points

Classical Solution:
2D Marching Square
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Look-up table contour lines

LTA A 5

Case 0 Case 1 Case 2 Case 3

]

Case 4 Case 5 Case 6 Case 7

ARIIgNED

Case 8 Case 9 Case 10 Case 11

H AN ]

Case 12 Case 13 Case 14 Case 15

https://fen.wikipedia.org/wiki/Marching_squares



Classical Solution:
3D Marching Square

. 28 = 256 cases

* The first published version exploits rotation and
Inversion, and only considers 15 unique cases:

£ £
i1

38 http://graphics.stanford.edu/courses/cs468-12-spring/
LectureSlides/04_Surface_Reconstruction.pdf



Ambiguity

« Ambiguity leads to holes:

39 http://graphics.stanford.edu/courses/cs468-12-spring/
LectureSlides/04_Surface_Reconstruction.pdf



Solution to Ambiguity

« Considering more cases in the look-up table by
watching larger context:

0 1 2 9 10
Case 10.1.1 Case 10.12 Case 10.2
3 4
11 12 7
Case 3.1 Case 32 Case 4.1.1 Case 4.12 Case 12.2 Vg
¢
5 6 Case 12.1.1 Case 12.12
V (a)
% 13
Case 12.3 1
Case 6.1.1 Case 6.1.2 Case 6.2 14
7

el AV

! ; Case 13.1 Case 132 Case 133 [
8
ﬂ ‘ (b)
Case 7.1 Case 7.2 Case 73

/

Case 134 Case 135.1 Case 1352

Case 74.1 Case 74.2

40 Chernyaev et al., “Marching cubes 33: Construction of
topologically correct isosurfaces.”, 1995



Comparison

- Explicit meshing Implicit meshing
(e.g., ball-pivoting) (e.g., RBF, Poisson)

Sensitive NG Yes
to normals
Watertlght No Yes, in most cases
manifold
« Large-scale equations to
: . estimate implicit function
Complexity Linear

« Marching cubes
* Dense voxelization

41



Use Neural Network to
Approximate Implicit Field Function

(x,,2) j SDF Code j SDF
(x,y,2)

(a) Single Shape DeepSDF (b) Coded Shape DeepSDF

* (a) use the network to overfit a single shape
 (b) use a latent code to represent a shape, so that the
network can be used for muItipIe shapes

S
VWY “‘\;\/\/\/\/

k et al., “DeepSDF: Learning c ot uous signed distance

nctions for shape representation.”, CVPR 2019



Consistent Orientation?

* Require the ground-truth signed implicit functions
during training (e.g., signed distance, occupancy)

» However, 3D raw data, such as point cloud or triangle
soup, are not necessarily consistently oriented

- e.g., getting normal orientation for ShapeNet data is
not easy

43



Recent Work: Sign Agnostic Learning
of Shapes from Raw Data

» Unsigned distance is easy to obtain
- Distance to the point cloud & triangle soup

» Learn signed distance from unsigned distance
groundtruth

- Require a special loss function

44 Atzmon et al., “Sal: Sign agnostic learning of
shapes from raw data.”, CVPR 2020



Sign Agnostic Learning

loss(@) = E, 7 (f(x; 9), h (x))

« ¥y C R3: iInput raw data (e.g., a point cloud or a triangle
soup)

. f(x;0) : R’ X R™ — R: learned signed function
. D)(: distribution of the training samples defined by y

. hx(x): some unsigned distance measure to y

- 7: RXR, — R: asimilarity function

45 Atzmon et al., “Sal: Sign agnostic learning of
shapes from raw data.”, CVPR 2020



Sign Agnostic Learning

loss(0) = [ExNDZT <f(x;0), h (x))

. h)((x): some unsigned distance measure to y

. 0 ze X
ho(z) = min ||z — x||5 4 ho(z) =
xcX 1 =z g X
el - /4

- 7: RXR, — R: asimilarity function

t(a,b) = |la| = b|”

46 Atzmon et al., “Sal: Sign agnostic learning of
shapes from raw data.”, CVPR 2020



Two Local Minima

loss(@) = E,_p 7 (f(x; 9), h (x)>

. fis an unsigned function that resembles h%(x)
. [is a signed function and | f| resembles A, (x)
» We prefer the second case to use marching cube

47 Atzmon et al., “Sal: Sign agnostic learning of
shapes from raw data.”, CVPR 2020



Two Local Minima

. Pick a special weight initialization 8° so that
f(x:0°) ~ @(llx|| — r), where ¢(|lx|| — r) is the
signed distance function to an r-radius sphere

> 0if||x|| > r
- f<Oif||lx]| <7

. Under such an initialization, fis not easy to converge
to the unsigned local minima.

48 Atzmon et al., “Sal: Sign agnostic learning of
shapes from raw data.”, CVPR 2020



2D Results

Unsigned function
as supervision

(b)

Learned signed
function

(d)

49 Atzmon et al., “Sal: Sign agnostic learning of
shapes from raw data.”, CVPR 2020



Surface Reconstruction Results
from Raw Data

Raw
Point Cloud

Ball-Pivoting
Algorithm

SAL

50 Atzmon et al., “Sal: Sign agnostic learning of
shapes from raw data.”, CVPR 2020



