

Machine Learning meets Geometry

L18: Surface Reconstruction

Hao Su

Ack: Minghua Liu helped to prepare slides

Surface Reconstruction

- Explicit Algorithms
- Implicit Algorithms

Surface Reconstruction Task

- Input: point cloud (with or without normals)
- Output: triangle mesh

3

Two Basic Families

- Explicit algorithms
	- Directly connect the input points with triangles, e.g.,
		- ‣ ball-pivoting algorithm
		- ‣ extrinsic-intrinsic ratio algorithm
- Implicit algorithms
	- Approximate the input points by implicit field functions $S = \{x : F(x) = 0\}$
	- Then extract iso-surfaces, e.g.,
		- ‣ poisson surface reconstruction
		- ‣ reconstruction with RBF

Some Desired Properties of the Algorithm

- Fast: The input point cloud may be large. We expect the computation to be fast.
- Robust: May recover the underlying surface structure even when the input point cloud is noisy
- Output mesh is desired to satisfy some geometric constraints

Geometric Constraint: Manifold

- A mesh is **manifold** if it does not contain:
	- self intersection
	- non-manifold edge (has more than 2 incident faces)
	- non-manifold vertex (one-ring neighborhood is not connected after removing the vertex)

- A useful property for many subsequent geometry processing pipelines
	- e.g., to add texture maps and …

Geometric Constraint: Watertight

- A **manifold** mesh is **watertight** if each edge has **exactly** two incident faces, i.e., no boundary edges.
- Defines the interial, hence the volume of a solid object
- Required by many physicalsimulation algorithms:
	- Estimate mass from density
	- Collision between objects
	- Force simulation

- …

https://transmagic.com/wp-content/uploads/2016/05/watertight-solid-3d-cad-models-transmagic.png

Surface Reconstruction

- Explicit Algorithms
	- Ball-Pivoting Algorithm
	- Extrinsic-Intrinsic Ratio Algorithm
- Implicit Algorithms

Ball-Pivoting Algorithm

• Input: a point cloud and a hyper-parameter *ρ*

Ball-Pivoting Algorithm

- Input: a point cloud and a hyper-parameter *ρ*
- Assumption:
	- input points are dense enough that a ball of radius ρ cannot pass through the surface without touching the points.

Ball-Pivoting Algorithm

- Input: a point cloud and a hyper-parameter *ρ*
- Assumption:
	- input points are dense enough that a ball of radius ρ cannot pass through the surface without touching the points.
- Principle for face formation:
	- three points form a triangle if a ball of radius *ρ* touches them without containing any other points.

Ball-Pivoting Algorithm (2D)

- Starting with a corner point and a ρ -ball
- Verify potential edges (triangles) in the *ρ* -neighborhood by the previous principle

Ball-Pivoting Algorithm (2D)

• The ball pivots around an edge (triangles) until it touches another point, forming another triangle.

Ball-Pivoting Algorithm (2D)

- The process continues until all reachable edges have been tried
- Then starts from another seed triangle, until all points have been considered.

Radius *ρ* **Matters**

• Appropriate radius (a)

 (a)

Radius *ρ* **Matters**

- Appropriate radius (a)
- Radius too small: some of the edges will not be created, leaving holes. (b)

Radius *ρ* **Matters**

- Appropriate radius (a)
- Radius too small: some of the edges will not be created, leaving holes. (b)
- Large radius: some of the points will not be reached (when the curvature of the manifold is larger than $1/\rho$) (c)

17 http://www.banterle.com/francesco/courses/ 2017/be_3drec/slides/lecture16.pdf

Iterative Approach

- Using multiple radius, iteratively connects the points.
- Small Radius capture high frequencies.
- Large Radius close holes.

Ambiguous Structures

- Sometimes, defining a rule for structure estimation is hard
	- e.g., we tend to interpret the following point cloud as two disjoint ellipses; however, no ρ value allows us to separate them

Ambiguous Structures

• Traditional Rule-based methods cannot handle ambiguous structures (e.g., thin structures & adjacent parts).

Review: Learning-Based Method

- Train a network to filter out incorrect connections.
- Utilize the Intrinsic-Extrinsic Ratio to guide the training.

Ambiguous Structures

Pros & Cons

- Pros:
	- Linear complexity (fast)
	- No dependence on normals
- Cons:
	- Can lead to non-manifold situations, and no watertight guarantee
- Regarding robustness:
	- Learning can improve the robustness
	- However, current learning-based method would still not work when the sampling density is low

Surface Reconstruction

- Explicit Algorithms
- Implicit Algorithms
	- RBF implicit function estimation
	- Marching cube

Implicit Field Function

- Interior: $F(x, y, z) < 0$
- Exterior: $F(x, y, z) > 0$
- Surface: $F(x, y, z) = 0$ (zero set, zero iso-surface)
- Example implementation:
	- $F(x, y, z) = 0$ istance to the surface

Implicit Meshing Algorithm

- Two basic steps:
	- 1.Estimate an implicit field function from data
	- 2.Extract the zero iso-surface

Implicit Meshing Algorithm

- Two basic steps:
	- 1. **Estimate an implicit field function from data**
	- 2. Extract the zero iso-surface

Radial Basis Functions

- Radial basis functions (RBF) $\phi_c(\mathbf{x})$: function value depends only on the distance from a center point *c*
- Use a weighted sum of radial basis functions to approximate the shape:

$$
\phi_c(\mathbf{x}) = \phi(||\mathbf{x} - \mathbf{c}||)
$$

$$
f(\mathbf{x}) = \sum_{i=1}^n \omega_i \phi(||\mathbf{x} - \mathbf{x}_i||) + p(x)
$$

where *p* is a polynomial of low degree

http://www.banterle.com/francesco/courses/ 2017/be_3drec/slides/lecture16.pdf

Constraints: Avoiding Non-Trivial Solutions

- Only force input points \mathbf{x}_i to have zero value $f(\mathbf{x}_i) = 0$ is not enough, it may get the trivial solution $f(\mathbf{x}) \equiv 0$
- Use normal to add off-surface points.

$$
f(\mathbf{x}_i) = 0
$$

$$
f(\mathbf{x}_i + \lambda \overrightarrow{\mathbf{n}}_i) = \lambda
$$

$$
f(\mathbf{x}_i - \lambda \overrightarrow{\mathbf{n}}_i) = -\lambda
$$

Consistent Normals are Required

- We just assumed consistent normals
- Normal is typically required to build watertight meshes
- However, obtaining consistent normal orientation is non-trivial (discussions deferred to later).

Estimate Parameters

- Variables:
	- $n + l$ variables on ω_i (RBF coef.) and c_i (polynomial coef.)
- Solve a linear system of $3n + l$ equations
	- $-3n$: from the point, inside, and outside
	- $-$ *l*: additional constraints to guarantee the smoothness and integrability of *f*

$$
\begin{pmatrix} A & P \ P^{\mathsf{T}} & 0 \end{pmatrix} \begin{pmatrix} \lambda \\ c \end{pmatrix} = B \begin{pmatrix} \lambda \\ c \end{pmatrix} = \begin{pmatrix} f \\ 0 \end{pmatrix}
$$

\n
$$
A_{i,j} = \phi(|x_i - x_j|), \qquad i, j = 1, ..., N, \nP_{i,j} = p_j(x_i), \qquad i = 1, ..., N, \quad j = 1, ..., \ell.
$$

Implementation Details

- Triharmonic basis functions: $\phi(r) = r^3$
	- Need its extrapolation ability
	- Should **not** use RBF with compact or local support (e.g., Gaussian density)
- Polynomial: third-order is practically good

Implementation Details

- Do not need to use all the input data points as RBF centers
	- Use a greedy algorithm to select a subset of points
- Noisy data
	- Exact interpolation?
	- Treat the linear equation as solving a linear square problem and add a smoothness term

 (a)

 (c)

Figure 9: (a) Exact fit, (b) medium amount of smoothing applied (the RBF approximates at data points), (c) increased smoothing.

 (b)

33 Carr, Jonathan C., et al. "**Reconstruction and representation of 3D objects with radial basis functions**." 2001

More than RBF

- Kazhdan M, Bolitho M, Hoppe H. "**Poisson surface reconstruction**." ESGP, 2006.
	- Robust to noise, adapt to the sampling density
	- Over-smoothing
- Kazhdan M, Hoppe H. "**Screened poisson surface reconstruction**." ToG, 2013.
	- Sharper reconstruction, faster
	- But it assumes clean data

POISSON

SCREENED POISSON

Implicit Meshing Algorithm

- Two basic steps:
	- 1. Estimate an implicit field function from data
	- 2. **Extract the zero iso-surface**

Input: a signed distance field (Implicitly assumed knowing the inside/outside of the shape, often needs to be estimated with **normal** information)

Classical Solution: 2D Marching Square

1	1	1	1	1
$\mathbf 1$	2	3	2	1
1	З	3	3	1
$\mathbf 1$	2	3	2	1
1	$\mathbf{1}$	1	1	1

Threshold with iso-value

Binary image to cells

Classical Solution: 2D Marching Square

Classical Solution: 3D Marching Square

- $2^8 = 256$ cases
- The first published version exploits rotation and inversion, and only considers 15 unique cases:

Ambiguity

• Ambiguity leads to holes:

Solution to Ambiguity

• Considering more cases in the look-up table by watching larger context:

Case 7.4.

Case 7.4.2

Comparison

Use Neural Network to Approximate Implicit Field Function

- (a) use the network to overfit a single shape
- (b) use a latent code to represent a shape, so that the network can be used for multiple shapes

Consistent Orientation?

- Require the ground-truth *signed* implicit functions during training (e.g., signed distance, occupancy)
- However, 3D raw data, such as point cloud or triangle soup, are not necessarily consistently oriented
	- e.g., getting normal orientation for ShapeNet data is not easy

Recent Work: Sign Agnostic Learning of Shapes from Raw Data

- Unsigned distance is easy to obtain
	- Distance to the point cloud & triangle soup
- Learn *signed* distance from *unsigned* **distance** groundtruth
	- Require a special loss function

Sign Agnostic Learning

$$
loss(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{x} \sim D_{\chi}} \tau\left(f(\boldsymbol{x}; \boldsymbol{\theta}), h_{\chi}(\boldsymbol{x})\right)
$$

- $\chi \subset \mathbb{R}^3$: input raw data (*e.g*., a point cloud or a triangle soup)
- \bullet $f(x; \theta): \mathbb{R}^3 \times \mathbb{R}^m \rightarrow \mathbb{R}$: learned signed function
- D_{χ} : distribution of the training samples defined by χ
- $\bm{h}_{\chi}(\bm{x})$: some *unsigned* distance measure to χ
- $\tau : \mathbb{R} \times \mathbb{R}_{+} \to \mathbb{R}$: a similarity function

Sign Agnostic Learning

$$
loss(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{x} \sim D_{\chi}} \tau\left(f(\boldsymbol{x}; \boldsymbol{\theta}), h_{\chi}(\boldsymbol{x})\right)
$$

 $\bm{h}_{\chi}(\bm{x})$: some *unsigned* distance measure to χ

$$
h_2({\bm{z}}) = \min_{{\bm{x}} \in \mathcal{X}} \|{\bm{z}} - {\bm{x}}\|_2 \begin{array}{|c|c|} \hline \circ\circ\circ \\ \hline \circ\circ\circ \\ \hline \circ\circ\circ\end{array}\hspace{1cm} h_0({\bm{z}}) = \left\{\begin{array}{ll} 0 & z \in \mathcal{X} & \bullet \\ 1 & z \notin \mathcal{X} \end{array}\right\}
$$

 $\tau_{e}(a,b) = ||a| - b|^{e}$

Two Local Minima

$$
\text{loss}(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{x} \sim D_{\chi}} \tau \left(f(\boldsymbol{x}; \boldsymbol{\theta}), h_{\chi}(\boldsymbol{x}) \right)
$$

- \bullet f is an $\boldsymbol{\mathit{unsigned}}$ function that resembles $h_{\chi}(\boldsymbol{x})$
- \bullet f is a signed function and $|f|$ resembles $h_\chi(\pmb{x})$
- We prefer the second case to use marching cube

Two Local Minima

- Pick a special weight initialization θ^0 so that $f\left(\pmb{x};\boldsymbol{\theta}^{0}\right)\approx\varphi(\left\Vert \pmb{x}\right\Vert -r),$ where $\varphi(\left\Vert \pmb{x}\right\Vert -r)$ is the signed distance function to an r-radius sphere $-f > 0$ if $||x|| > r$ - if *f* < 0 ∥*x*∥ < *r*
- Under such an initialization, f is not easy to converge to the unsigned local minima.

2D Results

Unsigned function as supervision

 (b)

 (a)

 (d)

Atzmon et al., "**Sal: Sign agnostic learning of shapes from raw data.**", *CVPR 2020*

Learned signed function

49

Surface Reconstruction Results from Raw Data

Raw Point Cloud

Ball-Pivoting Algorithm

