UCSan Diego Machine Learning meets Geometry

L16: Deformation

Hao Su

Ack: Yuzhe Qin and Fanbo Xiang for helping to prepare slides



Agenda

* Introduction
e Surface Deformation
« Space Deformation

 Skeleton Skinning



Shape Deformation

* Generate new shape by deforming an existing one
- e.g., to create animate character motion

Gao, et al. Limit Shapes — A Tool for Understanding Shape
Differences and Variability in 3D Model Collections
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Preferred Deformation Algorithm

 Deformation should be natural

* Modeler works less, algorithm does more
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Surface Deformation

Laplacian Surface Editing



Shape Surface Representation

* Recall Lecture 4:
- Piece-wise Linear Surface Representation
- E.g., triangular mesh
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Surface Deformation

* Deformation is only defined on the surface
. Surface deformation: d : V — R’

« V is vertices of mesh

image: https://doc.cgal.org/latest/Surface_mesh_deformation/



Desired Surface Deformation

» Deformation is “natural”
- It tries to preserve local geometry.

* Modelers do less, algorithms do more
- E.g., given vertex position objective (new location
of a few vertices), other points follow “naturally”.

image: http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/18_Deformation_1.pdf
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How to Preserve Local Geometry?

 Recall: Curvature completely determines local surface
geometry

« We want to find a “natural” deformation that preserves
curvature

11



How to Preserve Curvature?

* Let us start with preserving mean curvature

* Recall: in HW2, Laplacian can be used to approximate
mean curvatures

(b) The difference between a vertex x and the average position of its 1-ring neighborhood is a

quantity that provides interesting geometric insight of the shape (see Figure 1). It can be
shown that,
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for a good mesh, where N(x) is the 1-ring neighorhood vertices of x by the mesh topology;,
H = %(K min + Kmax) i the mean curvature at x (in the sense of the underlying continuous
surface being approximated), 7 is the surface normal vector at x, and A A is a quantity pro-

portional to the total area of the 1-ring fan (triangles formed by x and vertices along the
1-ring).
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Laplacian Coordinates

* Different from common mesh representation in global
coordinates, we can represent a point relative to its
neighbors

1
JEN(V) :

. d;: degree of vertex i

y
Sorkine, et al. Laplacian Surface Editing 3



Laplacian Coordinates

* Recall:
Laplacian matrix: L =D — A
D is degree matrix and A is adjacency matrix

* Differential coordinates can be computed by a
normalized laplacian matrix

1
JENG)

5=U-D"'AV=D'L)V

. V'is a nx3 matrix denotes vertices position

14



Laplacian Coordinates Property

. Direction of 0; approximates the normal direction

. Size of the 0, approximates the mean curvature

1
JENG)
* Note: mean curvature cannot fully determine local
geometry. 2 numbers are needed
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Deform by Laplacian Coordinates

* Input: vertex (control point) position objective

« Consider a simple objective of moving several vertices
towards the new location: v/ = u;, where v'is vertex

after deformation.
* Energy function:

ZL(v)) is Iaplaman coordlnates of v/
E(V') = 2 16, — ZWII* + Z v/ = w2

AR

Laplacian Coordinate Laplacian Coordinate Objective:
of Original Mesh of Deformed Mesh Control Point
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Deform by Laplacian Coordinates

. Deformed shape can be solved by minimizing E(V")

E(V) =) 116, = LODI*+ ) 1vi = ull?
i=1 I=m

2289

E(V’) decreases by iterations

17



Issues?

. Other than preserving the mean curvature, 2 16, — LI

i=1

so have tried to preserve normal.
owever, normal preservation is undesired

ow can we cancel the effect of normal preservation?

18



Laplacian Coordinates
Under Transformation

 Normals are invariant under translation, so

L) =ZL(v;,+1)

19



Laplacian Coordinates
Under Transformation
* Normals are invariant under translation, so
L) =ZL(v;,+1)

« However, normal changes under rotation, so
Laplacian coordinates change under rotation




Laplacian Coordinates
Under Transformation

 Normals are invariant under translation, so

L) = L, +1)

« However, normal changes under rotation, so
Laplacian coordinates change under rotation

V@
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Laplacian Coordinates
Under Transformation
* Normals are invariant under translation, so
L) =ZL(v;,+1)

« However, normal changes under rotation, so
Laplacian coordinates change under rotation

RZL(v) = L(Rv))




Solution

- After deformation, assuming that the local reglon of the
surface will rotate

- Original optimization target:
E(V) =Y 16— LOPI*+ ) lIvi— wll?
i=1 iI=m

* New optimization target by introducing a variable to
cancel the rotation:

E(V') = 1&1? 2 IR:8; — LI+ Y M1vi — ]|
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Alternating Optimization

We optimize vertex V and rotation R iteratively

1. Estimate rotation R from the deformed shape

min E(V) = Y RS, — ZOPIP+ Y 11v— )
1
i=1 I=m

2. Estimate shape V' given rotation

min(||R;5, — L (v)||* + Z |R;v; — V]{”z)
K; JEN)
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Numerical Method

 Known {R;} to get V": Quadratic optimization with a
closed-form solution

in E(V) = RS. — LOW)II? + e
min £(V) ;u 8= L) §||v, ]
 Known V’to get { R;}: Quadratic optimization with a

constraint on R in SO(3)

min |[Ry; = v{||* + 2 IR = VJ{“2
& JENG)
RR' =1I,det(R) = 1

* Recall: Orthogonal Procrustes Problem in Lecture 11!
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Other Issues?

- Only mean curvature is considered
- Full curvature (2 numbers) is required to fully
determine the local geometry.

- Solution to the issue
- Deformation energy should consider both mean
curvature and Gaussian curvature (geodesic
distance preservation)

26



Surface Deformation

As-Rigid-As-Possible Deformation



Local Deformation

 Let's look at a local region centered at a vertex (called
a cell). X

How do we define a better deformation energy of this cell?

Sorkine, et al. As-Rigid-As-Possible Surface Modeling 28



Desired Property for
Deformation Energy

 Translation and rotation should not change the
deformation energy.

| >\
q V;
Vj 1
/
Vi,
Vi

/
1

Sorkine, et al. As-Rigid-As-Possible Surface Modeling 29



Desired Property for
Deformation Energy

 Translation and rotation should not change the
deformation energy.

 Stretching (length change) and bending (angle
change) increase deformation energy.

Vi,

Vi

Sorkine, et al. As-Rigid-As-Possible Surface Modeling



Local Deformation Energy

 Translation and rotation should not change the
deformation energy.

 Stretching (length change) and bending (angle
change) increase deformation energy.

E(v) = min YN =v) = R = v
" JENG)

Local Deformation Energy

Sorkine, et al. As-Rigid-As-Possible Surface Modeling 31



Local Deformation Energy

 Translation and rotation should not change the
deformation energy.

 Stretching (length change) and bending (angle
change) increase deformation energy.

Minimum over all rotations, rotation-invariant

/o N\

E(v)—mm Z | (v; —v)—R(v —v)||2

ki JEN() \ / le

Relative to the cell center ( v orv ), translation-invariant

Sorkine, et al. As-Rigid-As-Possible Surface Modeling 32



Local Deformation Energy

 Translation and rotation should not change the
deformation energy.

 Stretching (length change) and bending (angle
change) increase deformation energy.

Penalize change of length

E()=min > (1= v) = R = Il
" JENG)

T

R; is shared by the cell, penalize change of angle

Sorkine, et al. As-Rigid-As-Possible Surface Modeling 33



Local Deformation Energy

E()=min > (1= v) = R = I
' JENG)

* It is (again) an Orthogonal Procrustes Problem!

Sorkine, et al. As-Rigid-As-Possible Surface Modeling 34



Total Deformation Energy

« Sum up the local deformation energy over all vertices

E(V’)—manmln Z | (v; —v)—R(v —v)||2
i=1 "]eN(z)
s.t. vi=c¢,jeC

C: the set of control point indices

» Minimizing total deformation energy

- As-Rigid-As-Possible deformation (ARAP
deformation)

Sorkine, et al. As-Rigid-As-Possible Surface Modeling 35



Total Deformation Energy

* Alternating optimization
- Given initial guess v, find optimal rotations R;.

»  This is a per-cell task! We already showed how
to estimate R; when v, v" are known

- Given the R; (fixed), minimize the energy by
finding new v’

E(Vy=min ), > 107 =v) =Ry =)l

i=1 jENG)

Linear Least Square

Sorkine, et al. As-Rigid-As-Possible Surface Modeling 36



Total Deformation Energy

* Alternating optimization
- Given initial guess v, find optimal rotations R;.

»  This is a per-cell task! We already showed how
to estimate R; when v, v" are known

- Given the R; (fixed), minimize the energy by
finding new v’
E(V)=min )" Y v/ =v) = R(v, = )|

i=1 jENG)

@ use Laplacian

min || £V’ — b||?
v

Sorkine, et al. As-Rigid-As-Possible Surface Modeling 37



Initialization

Start from naive Laplacian editing as initial guess and
iterate

initial guess 1 iteration
initial guess 1 iterations 4 iterations

Sorkine, et al. As-Rigid-As-Possible Surface Modeling 38



Examples

39

Sorkine, et al. As-Rigid-As-Possible Surface Modeling



Summary

 As-rigid-as-possible deformation iteratively minimize
the deformation energy.

* The deformation energy penalizes both mean
curvature change and length change.

40



Further Comments

* lterative algorithm, slow on large meshes.

« Guaranteed to converge (energy is bounded and
monotonically decreasing for each iteration)

* The idea can generalize to other energy definition or
3D volume deformation (real physical deformation)

41



Space Deformation

a.k.a. Free-Form Deformation



Surface vs Space Deformation

* Previously: surface deformation
- Move vertices of the mesh

» Space deformation
- Define a function that warps the R space.

fiR >R

- Evaluate the space deformation on mesh vertices
to deform the mesh.

43



Free-Form Deformation

* Free-Form Deformation (Sederberg & Parry, 1986)

E Lattice

« Still widely used today R
* e.g. Blender Lattice modifier

Strength

44



Recall: Bezier Curve from Lecture 1

45



3D Free-Form Deformation

» Control points: 3D lattice

* Modelers drag the vertices of the lattice to define
displacements d..

* Displacements of points in space are computed by
interpolating d; with interpolating weights B,

d(x) = Z B.(x)d.

46



3D Free-Form Deformation

d(x) = Z B.(x)d,

- Compute the Bezier parameters in each dimension
and apply tricubic interpolation.

d(x,y,7) = Z Z Z Bi(x)B(y)B(2)d,j
i j k

47



Issues

» Lattice can be large. Modelers do too much: move
control points one by one by hand.

 Like Bezier curves, not easy to intuitively relate
position of control points with the geometry.

* There are approaches using fewer point points, e.g.,
cage deformation, key-point based deformation

48



Learning-based Deformation
Field by Keypoints

* Use keypoints as control points
 Use network to learn a basis function from data!
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3D Mesh with
Control-Point Handles

Liu, et al. DeepMetaHandles: Learning Deformation Meta-Handles
of 3D Meshes with Biharmonic Coordinates 49
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Summary

« Space deformation are typically very fast
* Run in real time

* Widely used in real-time animation

50



Skeleton Skinning

Linear Blend Skinning

Read yourself



Surface Deformation Space Deformation

- Pro: Automatically * Pro: Fast
preserve curvatures - Con: Need artists to tune
. Con: Slow control point movements to

achieve curvature
preservation

Read yourself

52



Deformation for Objects with Bones

- Many objects have “bones” — deformation may be
iInterpreted as
- coarse-level bone transformation; and
- fine-level skin transformation

Kavan, et al. Direct Skinning Methods and Deformation Primitives

Romero, et al. Embodied Hands: Modeling and Capturing Hands and Bodies Together Read yourself

Le, et al. Robust and Accurate Skeletal Rigging from Mesh Sequences 53



Skeleton

- Skeleton: bones of body linked together

» The pose of bones can be represented using a set of
matrices T, € SE(3) from current pose to rest pose

Read yourself

Kavan, et al. Direct Skinning Methods and Deformation Primitives 54



Skeleton

- Skeleton: bones of body linked together

* The pose of bones can be represented using a set of
matrices T, € SE(3) from current pose to rest pose

rest pose

Read yourself

Kavan, et al. Direct Skinning Methods and Deformation Primitives 55



Skeleton

- Skeleton: bones of body linked together

* The pose of bones can be represented using a set of
matrices T, € SE(3) from current pose to rest pose

rest pose Ty

Read yourself

56

Kavan, et al. Direct Skinning Methods and Deformation Primitives



Skinning

* The surface of body deforms as the skeletons are
transformed rigidly

Read yourself

57

Kavan, et al. Direct Skinning Methods and Deformation Primitives



Linear Blend Skinning

. Skin vertex move when pose of bone 7} change
- If v; on the j-th bone, then it will move to Y}Vi

* Around joints there will be cracks. In practice, each
vertex is governed by multiple bones,
- e.g., averaged by a linear model (SMPL):

v; Z v = ZWUT»v

j=1

w; i : skinning weights

- Describes the amount of influence of bone j on
vertex [

Read yourself

58



Skinning Weights

m
- We commonly require w; ; > 0, Z Wi i = 1
J=0

Kavan, et al. Direct Skinning Methods and
Deformation Primitives

Read yourself

59



Limitations |

e Linear combination of transformations is simple

e However, note that rotation matrices are not in a
linear space

Candy-wrapper artifacts

Image: Kavan, et al. Geometric Skinning with
Approximate Dual Quaternion Blending

Read yourself

60



Limitations |

e Linear combination of transformations is simple

e However, note that rotation matrices are not in a
linear space

How to address the issue?

« Use quaternion and some tricks to
achieve linear interpolation of rotations

- SLERP: Spherical Linear IntERPolation
(https://en.wikipedia.org/wiki/Slerp)

Read yourself

Image: Kavan, et al. Geometric Skinning with

61
Approximate Dual Quaternion Blending


https://en.wikipedia.org/wiki/Slerp

Limitations I

* Modelers do too much: Assigning skinning weights is
cumbersome

 Can we learn weights from data? Next lecture!

Kavan, et al. Direct Skinning Methods and
Deformation Primitives

Read yourself

62



Summary

« Skeleton: linked bones

- Skinning: deform the surface along skeleton
transformation

» Linear Blend Skinning:
- Rest pose

- Bone transformation
- Skinning weight

N Read yourself



Deformation in Blender

&) Add Modifier

. . AS Armature ™7 Cloth
* You can find these deformation O o= g oun
algorithms in blender. Try it 5 et 5 ek
you rself! HEH-? it::;;llauan Deform »;: i)_c:r;phrt_) “
_ Aomorss @ 5oy
- There are a lot more to play with! IS

~ Smooth

¢~ Smooth Corrective
¢~ Smooth Laplacian

10| Surface Deform

Read yourself
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