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Agenda

• Introduction


• Surface Deformation


• Space Deformation


• Skeleton Skinning
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Shape Deformation

3Gao, et al. Limit Shapes – A Tool for Understanding Shape  
Differences and Variability in 3D Model Collections

• Generate new shape by deforming an existing one

- e.g., to create animate character motion



Shape Deformation
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Deformation 

AlgorithmShape Deformed


 Shape

Objective and 

Constraints



Shape Deformation
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Deformation 

AlgorithmShape Deformed


 Shape

Objective and 

Constraints

Objective:

Modeler Input


e.g., drag

Constraints: 

Geometry and Physics


e.g., gravity

Gao, et al. ACAP: Sparse Data Driven Mesh Deformation



Preferred Deformation Algorithm
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• Deformation should be natural


• Modeler works less, algorithm does more

Simply Drag 

the Handle

Unrealistic

Deformation



Surface Deformation
Laplacian Surface Editing

As-Rigid-As-Possible Deformation



Shape Surface Representation
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• Recall Lecture 4:

- Piece-wise Linear Surface Representation

- E.g., triangular mesh

V = v1, v2, . . . , vn ⊂ ℝ3

E = e1, e2, . . . , en ⊆ V × V

F = f1, f2, . . . , fn ⊆ V × V × V



Surface Deformation
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• Deformation is only defined on the surface


• Surface deformation: 

•  is vertices of mesh

d : V → ℝ3

V

image: https://doc.cgal.org/latest/Surface_mesh_deformation/



Desired Surface Deformation
• Deformation is “natural”


- It tries to preserve local geometry. 


• Modelers do less, algorithms do more

- E.g., given vertex position objective (new location 

of a few vertices), other points follow “naturally”.

10
image: http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/18_Deformation_1.pdf



How to Preserve Local Geometry?

• Recall: Curvature completely determines local surface 
geometry 


• We want to find a “natural” deformation that preserves 
curvature  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How to Preserve Curvature?
• Let us start with preserving mean curvature


• Recall: in HW2, Laplacian can be used to approximate 
mean curvatures
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Laplacian Coordinates
• Different from common mesh representation in global 

coordinates, we can represent a point relative to its 
neighbors


•

• : degree of vertex  

δi = vi − ∑
j∈N(vi)

1
di

vj

di i

13Sorkine, et al. Laplacian Surface Editing

δi

vi vj1

vj2vj3

vj4

vj5



Laplacian Coordinates
• Recall:


Laplacian matrix: 
 is degree matrix and  is adjacency matrix


• Differential coordinates can be computed by a 
normalized laplacian matrix


•  is a nx3 matrix denotes vertices position

L = D − A
D A

V
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δi = vi − ∑
j∈N(i)

1
di

vj

δ = (I − D−1A)V = (D−1L)V



Laplacian Coordinates Property
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δi = vi − ∑
j∈N(i)

1
di

vj

• Direction of  approximates the normal direction

• Size of the  approximates the mean curvature


• Note: mean curvature cannot fully determine local 
geometry. 2 numbers are needed

δi

δi



Deform by Laplacian Coordinates
• Input: vertex (control point) position objective


• Consider a simple objective of moving several vertices 
towards the new location: , where  is vertex 
after deformation. 


• Energy function:


 is laplacian coordinates of 

v′￼i = ui v′￼

ℒ(v′￼i) v′￼i
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E(V′￼) =
n

∑
i=1

∥δi − ℒ(v′￼i)∥2 +
n

∑
i=m

∥v′￼i − ui∥2

Laplacian Coordinate

of Original Mesh

Laplacian Coordinate

of Deformed Mesh

Objective:

Control Point



Deform by Laplacian Coordinates
• Deformed shape can be solved by minimizing E(V′￼)

17

E(V′￼) =
n

∑
i=1

∥δi − ℒ(v′￼i)∥2 +
n

∑
i=m

∥v′￼i − ui∥2

 decreases by iterationsE(V′￼)



Issues?
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• Other than preserving the mean curvature,  

also have tried to preserve normal.

• However, normal preservation is undesired

• How can we cancel the effect of normal preservation?

n

∑
i=1

∥δi − ℒ(v′￼i)∥2



Laplacian Coordinates 

Under Transformation

• Normals are invariant under translation, so

19

ℒ(vi) = ℒ(vi + t)



Laplacian Coordinates 

Under Transformation

• Normals are invariant under translation, so


• However, normal changes under rotation, so 
Laplacian coordinates change under rotation
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ℒ(vi) = ℒ(vi + t)



Laplacian Coordinates 

Under Transformation

• Normals are invariant under translation, so


• However, normal changes under rotation, so 
Laplacian coordinates change under rotation
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ℒ(vi) = ℒ(vi + t)



Laplacian Coordinates 

Under Transformation

• Normals are invariant under translation, so


• However, normal changes under rotation, so 
Laplacian coordinates change under rotation
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ℒ(vi) = ℒ(vi + t)

Rℒ(vi) = ℒ(Rvi)



• After deformation, assuming that the local region of the 
surface will rotate


• Original optimization target:


• New optimization target by introducing a variable to 
cancel the rotation:

Solution
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E(V′￼) = min
{Ri}

n

∑
i=1

∥ δi − ℒ(v′￼i)∥2 +
n

∑
i=m

∥v′￼i − ui∥2Ri

E(V′￼) =
n

∑
i=1

∥δi − ℒ(v′￼i)∥2 +
n

∑
i=m

∥v′￼i − ui∥2



Alternating Optimization
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min
Ri

(∥Riδi − ℒ(v′￼i)∥2 + ∑
j∈N(vi)

∥Rivj − v′￼j∥2)

We optimize vertex  and rotation  iteratively


1. Estimate rotation  from the deformed shape


2. Estimate shape  given rotation 

V R

R

V′￼

min
V′￼

E(V′￼) =
n

∑
i=1

∥Riδi − ℒ(v′￼i)∥2 +
n

∑
i=m

∥v′￼i − ui∥2



Numerical Method
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• Known  to get : Quadratic optimization with a 
closed-form solution


• Known  to get : Quadratic optimization with a 
constraint on  in 

{Ri} V′￼

V′￼ {Ri}
R SO(3)

min
Ri

∥Rivi − v′￼i∥2 + ∑
j∈N(vi)

∥Rivj − v′￼j∥2

min
V′￼

E(V′￼) =
n

∑
i=1

∥Riδi − ℒ(v′￼i)∥2 +
n

∑
i=m

∥v′￼i − ui∥2

RiRT
i = I, det(R) = 1

• Recall: Orthogonal Procrustes Problem in Lecture 11! 



Other Issues?

• Only mean curvature is considered

- Full curvature (2 numbers) is required to fully 

determine the local geometry.


• Solution to the issue 

- Deformation energy should consider both mean 

curvature and Gaussian curvature (geodesic 
distance preservation)
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Surface Deformation
Laplacian Surface Editing

As-Rigid-As-Possible Deformation



Local Deformation
• Let's look at a local region centered at a vertex (called 

a cell).

28Sorkine, et al. As-Rigid-As-Possible Surface Modeling

How do we define a better deformation energy of this cell?



Desired Property for 

Deformation Energy

• Translation and rotation should not change the 
deformation energy.

29Sorkine, et al. As-Rigid-As-Possible Surface Modeling

vj2

vj1

vi

v′￼j2
v′￼j1

v′￼i



30Sorkine, et al. As-Rigid-As-Possible Surface Modeling

vj2

vj1

v′￼j2
v′￼j1

vj2

vj1

v′￼j2
v′￼j1

vi

vi

v′￼i

v′￼i

Desired Property for 

Deformation Energy

• Translation and rotation should not change the 
deformation energy.


• Stretching (length change) and bending (angle 
change) increase deformation energy.



Local Deformation Energy
• Translation and rotation should not change the 

deformation energy.

• Stretching (length change) and bending (angle 

change) increase deformation energy.
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Local Deformation Energy

Sorkine, et al. As-Rigid-As-Possible Surface Modeling

E(vi) = min
Ri

∑
j∈N(i)

∥(v′￼i − v′￼j) − Ri(vi − vj)∥2



Local Deformation Energy
• Translation and rotation should not change the 

deformation energy.

• Stretching (length change) and bending (angle 

change) increase deformation energy.

32Sorkine, et al. As-Rigid-As-Possible Surface Modeling

Relative to the cell center (  or ), translation-invariantvi v′￼i

Minimum over all rotations, rotation-invariant

E(vi) = min
Ri

∑
j∈N(i)

∥(v′￼i − v′￼j) − Ri(vi − vj)∥2
vj2

vj1

vi



Local Deformation Energy
• Translation and rotation should not change the 

deformation energy.

• Stretching (length change) and bending (angle 

change) increase deformation energy.

33Sorkine, et al. As-Rigid-As-Possible Surface Modeling

Penalize change of length

E(vi) = min
Ri

∑
j∈N(i)

∥(v′￼i − v′￼j) − Ri(vi − vj)∥2

 is shared by the cell, penalize change of angleRi



Local Deformation Energy

• It is (again) an Orthogonal Procrustes Problem! 

34Sorkine, et al. As-Rigid-As-Possible Surface Modeling

E(vi) = min
Ri

∑
j∈N(i)

∥(v′￼i − v′￼j) − Ri(vi − vj)∥2



Total Deformation Energy
• Sum up the local deformation energy over all vertices


• Minimizing total deformation energy

- As-Rigid-As-Possible deformation (ARAP 

deformation)

35Sorkine, et al. As-Rigid-As-Possible Surface Modeling

E(V′￼) = min
v′￼

n

∑
i=1

min
Ri

∑
j∈N(i)

∥(v′￼i − v′￼j) − Ri(vi − vj)∥2

s . t . v′￼j = cj, j ∈ C

: the set of control point indicesC



Total Deformation Energy
• Alternating optimization

- Given initial guess , find optimal rotations .

‣ This is a per-cell task! We already showed how 

to estimate  when  are known


- Given the  (fixed), minimize the energy by 
finding new 

v′￼0 Ri

Ri v, v′￼

Ri
v′￼

36Sorkine, et al. As-Rigid-As-Possible Surface Modeling

Linear Least Square 

E(V′￼) = min
v′￼

n

∑
i=1

∑
j∈N(i)

∥(v′￼i − v′￼j) − Ri(vi − vj)∥2



E(V′￼) = min
v′￼

n

∑
i=1

∑
j∈N(i)

∥(v′￼i − v′￼j) − Ri(vi − vj)∥2

min
V′￼

∥ℒV′￼− b∥2

Total Deformation Energy
• Alternating optimization

- Given initial guess , find optimal rotations .

‣ This is a per-cell task! We already showed how 

to estimate  when  are known


- Given the  (fixed), minimize the energy by 
finding new 

v′￼0 Ri

Ri v, v′￼

Ri
v′￼

37Sorkine, et al. As-Rigid-As-Possible Surface Modeling

use Laplacian



Initialization
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Start from naïve Laplacian editing as initial guess and 
iterate

Sorkine, et al. As-Rigid-As-Possible Surface Modeling

initial guess 1 iteration 2 iterations

1 iterations 4 iterationsinitial guess



Examples

39Sorkine, et al. As-Rigid-As-Possible Surface Modeling



Summary

• As-rigid-as-possible deformation iteratively minimize 
the deformation energy.


• The deformation energy penalizes both mean 
curvature change and length change.

40



Further Comments

• Iterative algorithm, slow on large meshes.


• Guaranteed to converge (energy is bounded and 
monotonically decreasing for each iteration)


• The idea can generalize to other energy definition or 
3D volume deformation (real physical deformation)

41



Space Deformation
a.k.a. Free-Form Deformation




Surface vs Space Deformation
• Previously: surface deformation


- Move vertices of the mesh


• Space deformation

- Define a function that warps the  space.


- Evaluate the space deformation on mesh vertices 
to deform the mesh.

ℝ3

43

f : ℝ3 → ℝ3



Free-Form Deformation
• Free-Form Deformation (Sederberg & Parry, 1986)


• Still widely used today 

• e.g. Blender Lattice modifier

44



Recall: Bezier Curve from Lecture 1

45

s(t) =
n

∑
i=0

piBn
i (t)



3D Free-Form Deformation
• Control points: 3D lattice


• Modelers drag the vertices of the lattice to define 
displacements . 


• Displacements of points in space are computed by 
interpolating   with interpolating weights     

di

di Bi

46

d(x) = ∑
i

Bi(x)di



3D Free-Form Deformation

• Compute the Bezier parameters in each dimension 
and apply tricubic interpolation.

47

d(x, y, z) = ∑
i

∑
j

∑
k

Bi(x)Bj(y)Bk(z)dijk

d(x) = ∑
i

Bi(x)di



Issues
• Lattice can be large. Modelers do too much: move 

control points one by one by hand.


• Like Bezier curves, not easy to intuitively relate 
position of control points with the geometry.


• There are approaches using fewer point points, e.g., 
cage deformation, key-point based deformation

48



Learning-based Deformation 
Field by Keypoints

49

• Use keypoints as control points

• Use network to learn a basis function from data!

Liu, et al. DeepMetaHandles: Learning Deformation Meta-Handles 

of 3D Meshes with Biharmonic Coordinates



Summary

• Space deformation are typically very fast


• Run in real time


• Widely used in real-time animation

50



Skeleton Skinning
Linear Blend Skinning

Read yourself



Boneless Shape Editing

52

Surface Deformation

• Pro: Automatically 
preserve curvatures


• Con: Slow 

• Pro: Fast

• Con: Need artists to tune 

control point movements to 
achieve curvature 
preservation 

Space Deformation

Read yourself



Deformation for Objects with Bones

53

• Many objects have “bones” — deformation may be 
interpreted as 

- coarse-level bone transformation; and 

- fine-level skin transformation 

Kavan, et al. Direct Skinning Methods and Deformation Primitives

Romero, et al. Embodied Hands: Modeling and Capturing Hands and Bodies Together 

Le, et al. Robust and Accurate Skeletal Rigging from Mesh Sequences Read yourself



Skeleton

54

• Skeleton: bones of body linked together


• The pose of bones can be represented using a set of 
matrices  from current pose to rest poseTi ∈ SE(3)

Kavan, et al. Direct Skinning Methods and Deformation Primitives
Read yourself



Skeleton

55

• Skeleton: bones of body linked together


• The pose of bones can be represented using a set of 
matrices  from current pose to rest poseTi ∈ SE(3)

Kavan, et al. Direct Skinning Methods and Deformation Primitives

rest pose

Read yourself



Skeleton

56

• Skeleton: bones of body linked together


• The pose of bones can be represented using a set of 
matrices  from current pose to rest poseTi ∈ SE(3)

Kavan, et al. Direct Skinning Methods and Deformation Primitives

rest pose

Read yourself



Skinning

57

• The surface of body deforms as the skeletons are 
transformed rigidly

Kavan, et al. Direct Skinning Methods and Deformation Primitives
Read yourself



Linear Blend Skinning
• Skin vertex move when pose of bone  change


- If  on the j-th bone, then it will move to 

• Around joints there will be cracks. In practice, each 
vertex is governed by multiple bones, 

- e.g., averaged by a linear model (SMPL):


• : skinning weights

- Describes the amount of influence of bone  on 

vertex 

Tj
vi Tjvi

wi,j
j

i
58

v′￼i =
m

∑
j=1

wi, jTjvi = (
m

∑
j=1

wi, jTj)vi

Read yourself



Skinning Weights
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• We commonly require wi,j ≥ 0,
m

∑
j=0

wi,j = 1

Bone 1 Bone 2

Kavan, et al. Direct Skinning Methods and 

Deformation Primitives

Read yourself



Limitations I

60

• Linear combination of transformations is simple


• However, note that rotation matrices are not in a 
linear space


Candy-wrapper artifacts

Image: Kavan, et al. Geometric Skinning with 

Approximate Dual Quaternion Blending

Read yourself



Limitations I

61

• Linear combination of transformations is simple


• However, note that rotation matrices are not in a 
linear space


Candy-wrapper artifacts

Image: Kavan, et al. Geometric Skinning with 

Approximate Dual Quaternion Blending

How to address the issue? 


• Use quaternion and some tricks to 
achieve linear interpolation of rotations


• SLERP: Spherical Linear IntERPolation 
(https://en.wikipedia.org/wiki/Slerp)

Read yourself

https://en.wikipedia.org/wiki/Slerp


Limitations II
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• Modelers do too much: Assigning skinning weights is 
cumbersome


• Can we learn weights from data? Next lecture!

Kavan, et al. Direct Skinning Methods and 

Deformation Primitives

Read yourself



Summary
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• Skeleton: linked bones


• Skinning: deform the surface along skeleton 
transformation


• Linear Blend Skinning:

- Rest pose

- Bone transformation

- Skinning weight

Read yourself



Deformation in Blender
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• You can find these deformation 
algorithms in blender. Try it 
yourself!


• There are a lot more to play with!

Read yourself


