
HW2 Update
• Extend the deadline to 23:59pm, next Monday (Feb 

21)

• Updated rubric:


• Some basic generic tricks for network training are very 
useful (e.g., data normalization, increasing batch size, 
…)


• Fanbo will create a post about some generic tricks.
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L13: Analysis by Intrinsics

Hao Su

Machine Learning meets Geometry

Thank Xiaoshuai Zhang for helping to prepare slides



Extrinsics v.s. Intrinsics
• Extrinsics: cares about the embedding of a surface


- Looking at the surface outside the surface

- For example: 

‣ 6D pose of a rigid body

‣ Articulation state of joints linking rigid bodies

‣Normal curvature

‣…


- Distance in the ambient space determines 
extrinsics


• Intrinsics: 

- Looking at the surface inside the surface

- Geodesic distance determines intrinsics
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https://www.shapeways.com/designer/twistedmike
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Extrinsics v.s. Intrinsics
• Extrinsics: cares about the embedding of a surface


- Looking at the surface outside the surface

- For example: 

‣ est. 6D pose of a rigid body

‣ est. Articulation state of joints linking rigid bodies

‣ est. Normal curvature

‣…


• Intrinsics: 

- Looking at the surface inside the surface

- Geodesic distance uniquely determines shape 

intrinsics
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Gaussian and Mean 

Curvatures

9

K := κ1κ2Gaussian:
Mean: H :=

1
2

(κ1 + κ2)

K = 0
H = 0

K = 0
H ≠ 0

κn(X) ≡ 0 κn(X) ≢ 0

Recall:



Read by yourself



Theorema Egregium
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The Gaussian curvature of an embedded smooth 
surface in  is invariant under the local isometries.ℝ3

Gaussian Curvature is an Intrinsic 
Measurement of a Surface

Recall:



Read by yourself



Geodesic Distances

11

Extrinsically 
close

Intrinsically 
far



Applications: 

Shape Classification

• By classical method: Distribution of distances for point 
pairs randomly picked on the surface

12



Applications: Deformation-
Invariant Point Feature

• By learning-based method: Extract some geodesic 
distance based features (intrinsic features)
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Agenda

• Analytic Method for Computing Geodesics


• Learning to Predict Geodesics for Point Cloud


• Applications of Learning Point Cloud Geodesics

- Normal Estimation

- Mesh Reconstruction

14



Analytical Method for 

Computing Geodesics



Related Queries

16
Multi-source

Single source

https://www.ceremade.dauphine.fr/~peyre/teaching/manifold/tp3.html            http://www.sciencedirect.com/science/article/pii/S0010448511002260

All-pairs



Related Queries
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Multi-source

Single source

https://www.ceremade.dauphine.fr/~peyre/teaching/manifold/tp3.html            http://www.sciencedirect.com/science/article/pii/S0010448511002260

All-pairs



Geodesics on Meshes

18Meshes are graphs
http://www.cse.ohio-state.edu/~tamaldey/isotopic.html

Approximate 
geodesics as 
paths along 

edges



Can We Use Shortest Path 

Algorithms to Compute Geodesics?
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Fast Marching Algorithm

Dijkstra’s algorithm, modified to 
approximate geodesic distances.



Review of Dijkstra’s Algorithm

http://www.iekucukcay.com/wp-content/uploads/2011/09/dijkstra.gif



Key Idea of Dijkstra’s Algorithm

• Maintain a frontier set of vertices with the shortest 
distance from the source


• Propagate to the neighborhood 

24



Fast Marching Algorithm

25
http://research.microsoft.com/en-us/um/people/hoppe/geodesics.pdf

Source 
point

Front 
looks flat!



Fast Marching Algorithm
• At  and  stores the shortest paths  and 
• Question: shortest path  at ?

x1 x2 d1 d2
d3 x3

26 Source point

d1
d2



Fast Marching Algorithm
• Idea: Planar front approximation ( )∵ |x1x2 | ≈ 0

27

d1
d2

Source point



Trick: Every front looks flat!

28
http://research.microsoft.com/en-us/um/people/hoppe/geodesics.pdf

Source 
point

Front 
looks flat!



• Change of view: point source  planar source

• Front propagates from every point on the source

→

Fast Marching Algorithm

29

d1
d2

Planar source



• Front hits        at time        
• Hits        at time
• When does the front arrive      ?


- Step 1: Model wave front 
propagation from a planar 
source


    ：unit propagation direction


      ：source offset

- Step 2: Compute the distance 

from       to the plane

Fast Marching Update Steps

30

Planar source



Practical Implementation

31http://code.google.com/p/geodesic/



Learning to Predict Geodesics



Metric Learning Formulation

• Given points  on the surface, what is ?

• Metric learning:

                    
• : embedding function (e.g., MLP)

• Usually,  and 

P, Q dG(P, Q)

dG(P, Q) ≈ ∥ϕ(P) − ϕ(Q)∥p
ϕ

dim(ϕ( ⋅ )) ≫ 3 p = 2

33

ϕ Embedding Space 𝕃N
p
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P, Q dG(P, Q)
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dim(ϕ( ⋅ )) ≫ 3 p = 2
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ϕ Embedding Space ℝN

Q: Could “ ” become “=” with 
?

≈
dim(ϕ( ⋅ )) < ∞



Counter-Example

• Recall our  example: 

- Distance preservation (geodesic v.s. ) would 

preserve topological structure

- Circle has different topology as line segments

- So  cannot be embedded into Euclidean 

space without distortion


• Some results of the embedding for general metric 
space to come

SO(2)
ℓp

SO(2)

35



Some Result of Embedding 
General Metrics in  ℓp



Distortion of Embedding

• Metrics: 

-
-  and 
-

• Assume  and  and 

-

-

-

d(x, y) ≥ 0
d(x, x) = 0 ∀y ≠ x, d(x, y) > 0
d(x, y) + d(y, z) ≥ d(x, z)

ϕ : S ↦ T dS( ⋅ , ⋅ ) dT( ⋅ , ⋅ )

expansion( f ) = max
x,y

dT(ϕ(x), ϕ(y))
dS(x, y)

contraciton( f ) = max
x,y

dS(x, y)
dT(ϕ(x), ϕ(y))

distortion( f ) = expansion × contraction

37



A Well-Known Result

38

Theorem (Bourgain, 1985).

Let (X, d) be a metric space on n points. Then,


 

http://ttic.uchicago.edu/~harry/teaching/pdf/lecture3.pdf

Remarks:

• Any n-point metric space  can be embedded in 

 with distortion 
• To accommodate more points, one needs higher dim 

space

• This bound can be shown tight (by worse case, w.r.t. 

distortion)

(X, d)
ℓp O(log n)



Influence
• We cannot expect that a finite (even infinite) 

dimensional  space would approximate any metric


• To compromise, we usually require the approximation 
to have higher precision for closer points:

• The geometry underlying closer points may be 

better embeddable (e.g., on the same tangent 
plane)


• Far away points just need to be known far away

• Recall the hinge loss for point feature learning in the 

bottom-up instance segmentation lecture:

           

ℓp

Lij = max(0,K − ∥Fi − Fj∥)
39



Learning to Predict Geodesics  
    Example work: GeoNet



Geodesics for Point Clouds
• No connectivity information

41 Figure from He, Tong, et al. "GeoNet: Deep geodesic 
networks for point cloud analysis." CVPR 2019 oral.



Task Formulation

42

• Input: Point Cloud 

• Output: Geodesic distance to  Euclidean neighbors 
for each point 

𝒳 = {xi}N
i=1

K



GeoNet: Geodesic Distance Regression

43 He, Tong, et al. "GeoNet: Deep geodesic networks for 
point cloud analysis." CVPR 2019.

Step 1: Feature Extraction

…

PointNet++

Input Point Cloud 𝒳
N × 3

Point Features ϕ(𝒳)
N × C

ϕ(x1)

ϕ(x2)

ϕ(x3)

ϕ(xN )



GeoNet: Geodesic Distance Regression

44 He, Tong, et al. "GeoNet: Deep geodesic networks for 
point cloud analysis." CVPR 2019.

Step 2: Metric Learning
For each  and its neighbor :xi xj

ϕ(xi)

ϕ(xj)
Concatenated Features

(  dimensional)3 + 2C

MLP

xi

Geodesic 
Distance ̂gij

Concatenation



GeoNet: Geodesic Distance Regression

45 He, Tong, et al. "GeoNet: Deep geodesic networks for 
point cloud analysis." CVPR 2019.

Step 2: Metric Learning
For each  and its neighbor :xi xj

Lgeo = ∑
xi∈𝒳

∑
xj∈NN(xi)

|gij − ̂gij |

ϕ(xi)

ϕ(xj)
Concatenated Features

(  dimensional)3 + 2C

MLP

xi

Geodesic 
Distance ̂gij

Concatenation



Geodesics Regression

46



Geodesics Induced Features

47

• Geodesics induced features are useful for 
downstream tasks

…

PointNet++

Input Point Cloud 𝒳
N × 3

Point Features ϕ(𝒳)
N × C

ϕ(xN )

MLP Lgeo



Applications

• Normal Estimation

• Mesh reconstruction



Normal Estimation
• Plane-fitting: find the plane that best fits the 

neighborhood of a point of interest

- Let  and ,


- : the last principal component of 

M = ∑
i

(xi − x̄)(xi − x̄)T x̄ =
1
n ∑

i

xi

n M

49

Recall:





Normal Estimation

50

k-NN + PCA GT Normal



Normal Estimation

51

 is large although  is small!dG(u, v) dE(u, v)
 Use geodesic neighborhoods for PCA⇒



Normal Estimation

52

Critical parameter: number of neighbors k. 

For unevenly sampled point cloud, we typically use all 
points inside a ball of radius r


Tricky to choose in practice!

Image courtesy of Maks Ovsjanikov

http://www.lix.polytechnique.fr/~maks/Verona_MPAM/
Slides/lecture1.pdf

http://www.lix.polytechnique.fr/~maks/Verona_MPAM/Slides/lecture1.pdf
http://www.lix.polytechnique.fr/~maks/Verona_MPAM/Slides/lecture1.pdf


How about predicting the normal, 
without PCA and estimation of  or ?r k

53



Learning to Regress Normals

54

…

PointNet++

Input Point Cloud 𝒳
N × 3

Point Features ϕ(𝒳)
N × C

ϕ(xN )

MLP

Estimated Normal ̂n
N × 3

Geodesic 
Distance ̂gij

MLP

Ltotal = Lgeo + Lnormal



Error Patterns

55

PointNet++ without 
GeoNet features

PointNet++ with 
GeoNet features

Large Error

Small Error



Learning to Regress Normals

56



Advantage of Learning-based 
Normal Estimation

• Can be robust to point cloud sampling strategy


• Without the need to determine neighborhood size


• Get orientation consistent normals (in classical 
methods, this step is highly non-trivial)

57



Applications

• Normal Estimation

• Mesh Reconstruction



Mesh Reconstruction
• Input: Point Cloud

• Output: Polygon Mesh

59
Figure courtesy of Pierre Alliez, 
Laurent Saboret, Gaël Guennebaud



A Simple K-NN Approach
• For each point  we try to greedily add all triangles 

formed by  and its neighbors:
xi

xi

60

 is the input point cloud

 is the output mesh triangles


for  to :

    find  nearest neighbors  of :

    for  to :

        for  to :

            triangle  

            if  is not in  and  is manifold after adding :
                add  to 

χ = {xi}n

S = {}

i = 1 n
K {pl}K

l=1 xi
j = 1 K

k = j + 1 K
△ = (xi, Nj, Nk)

△ S S △
△ S



Results not bad…

61

K = 10
GT 



But has issues at boundaries

62

GT 



63

GT 

• Triangles formed by connecting the upper surface and 
the bottom surface of the tabletop (intrinsically far)

and some bad triangles
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GT 

• Triangles formed by connecting the upper surface and 
the bottom surface of the tabletop (intrinsically far)

and some bad triangles

Q: Do we have a certificate 

of good triangles?



Intrinsic-Extrinsic Ratio

Given two vertices  on the surface, the intrinsic-
extrinsic ratio is defined as:


u, v

IER(u, v) =
dG(u, v)
dE(u, v)

65

GT 

Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance, Liu et al, ECCV2020



Visualization

66

GT 

Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance, Liu et al, ECCV2020



Intrinsic-Extrinsic Ratio 

for Triangles

For a triangle :


If point  is close enough,   
  (very likely) Triangle is on the surface  

△ uvw

IER(△uvw) =
dG(u, v) + dG(v, w) + dG(w, u)
dE(u, v) + dE(v, w) + dE(w, u)

u, v, w IER(△uvw) ≤ 1 + ε
⇒

67
Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance, Liu et al, ECCV2020
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We learn to predict this 
quantity!Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance, Liu et al, ECCV2020



Meshing Point Clouds with 
Intrinsic-Extrinsic Ratio Guidance

69

Case Study:


• Input point cloud is sampled from 
two closed thin surfaces  and 

•  are Euclidean nearest 
neighbors of 

-
-

S1 S2
{Pi}

A
{A, P1, P2, P3, P4} ⊂ S1
P5 ∈ S1

S1

S2

Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance, Liu et al, ECCV2020



Meshing Point Clouds with 
Intrinsic-Extrinsic Ratio Guidance

70
Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance, Liu et al, ECCV2020



Meshing Point Clouds with 
Intrinsic-Extrinsic Ratio Guidance

71
Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance, Liu et al, ECCV2020



Meshing Point Clouds with 
Intrinsic-Extrinsic Ratio Guidance

72
Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance, Liu et al, ECCV2020



Iterative Candidate Selection
• The added triangle should not break manifold 

properties

- No edge has more than two incident faces

- No intersection between triangles


• Prefer equilateral triangles:


Measured by the ratio of longest edge to shortest edge

73

√×

Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance, Liu et al, ECCV2020



Triangle Collision Detection

74 Read by yourself

Guigue P, Devillers O. Fast and robust triangle-triangle overlap test using 
orientation predicates. Journal of Graphics Tools. 2003 Jan 1;8(1):25-32.


Code: https://github.com/erich666/jgt-code/tree/master/Volume_08/Number_1/
Guigue2003

Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance, Liu et al, ECCV2020

https://github.com/erich666/jgt-code/tree/master/Volume_08/Number_1/Guigue2003
https://github.com/erich666/jgt-code/tree/master/Volume_08/Number_1/Guigue2003
https://github.com/erich666/jgt-code/tree/master/Volume_08/Number_1/Guigue2003


Meshing Results

75

k-NN

k-NN 
with IER

Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance, Liu et al, ECCV2020



Robustness

76

k-NN 
with IER

Poisson

Ground-
Truth

Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance, Liu et al, ECCV2020


