HW2 Update

« Extend the deadline to 23:59pm, next Monday (Feb
21)

 Updated rubric: ICP

Beat basellne Beat basellne
3pt 40% 20%
4pt 60% 50%
5pt 80% 80%

« Some basic generic tricks for network training are very
useful (e.g., data normalization, increasing batch size,

)

» Fanbo will create a post about some generic tricks.
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UCSan Diego Machine Learning meets Geometry

L13: Analysis by Intrinsics

Hao Su

Thank Xiaoshuai Zhang for helping to prepare slides



Extrinsics v.S. Intrinsics
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5 Image credit to Michael Spurr


https://www.shapeways.com/designer/twistedmike
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Extrinsics v.S. Intrinsics

 Extrinsics: cares about the embedding of a surface
- Looking at the surface outside the surface
- For example:
> est. 6D pose of a rigid body
> est. Articulation state of joints linking rigid bodies
> est. Normal curvature

>

* Intrinsics:
- Looking at the surface inside the surface

- Geodesic distance uniquely determines shape
Intrinsics



260@6@3 Gaussian and Mean
Curvatures

1
Mean: H := E(K1 + K,)

i ""
K=0 K=0
H=0 H#0
k(X)=0 k,(X)#0

Read by yourself



260@@@‘ Theorema Egregium

The Gaussian curvature of an embedded smooth
surface in [R3 IS Invariant under the local isometries.

Gaussian Curvature is an Intrinsic
Measurement of a Surface

Read by yourself
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Geodesic Distances

Intrinsically
far

Extrinsically
close



Applications:
Shape Classification

By classical method: Distribution of distances for point
pairs randomly picked on the surface

Centaur Wolf
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Applications: Deformation-
Invariant Point Feature

* By learning-based method: Extract some geodesic
distance based features (intrinsic features)
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Agenda

 Analytic Method for Computing Geodesics
 Learning to Predict Geodesics for Point Cloud
 Applications of Learning Point Cloud Geodesics

- Normal Estimation
- Mesh Reconstruction

14



Analytical Method for
Computing Geodesics



Related Queries

Single source

| |
de.dauphine.fr/~peyre/teaching/manifold/tp3.html http://www.sciencedirect.com/science/article/pii/SO0 104485 | 100226/
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Single source

| |
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Geodesics on Meshes

Approximate
geodesics as
paths along
edges

http://www.cse.ohio-state.edu/~tamaldey/isotopic.html

Meshes are graphs



Can We Use Shortest Path
Algorithms to Compute Geodesics?
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Can We Use Shortest Path

Algorithms to Compute Geodesics?
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Can We Use Shortest Path
Algorithms to Compute Geodesics?

ANANANAN




Fast Marching Algorithm

Dijkstra’s algorithm, modified to
approximate geodesic distances.



Review of Dijkstra’s Algorithm

e
7N

O
9
(5

N

e
7N

O
9
(82

WY

©
5
&)

A

7

e ()
.
)
&

'1 (3]
http://www.iekucukcay.com/wp-content/uploads/20 | 1/09/dijkstra.gif

©
9
(5

%

ZAS
@mtb

(0}
=
(6}

X

)

N
NN




Key Idea of Dijkstra’s Algorithm

 Maintain a frontier set of vertices with the shortest
distance from the source

* Propagate to the neighborhood

24



Fast Marching Algorithm

25



Fast Marching Algorithm

» At x; and x, stores the shortest paths d; and d,

» Question: shortest path d; at x3?
L3

N - /
o6 Source point " g



Fast Marching Algorithm

. Idea: Planar front approximation ( *. | x;x, | = 0)

L3

N - /
o7 Source point " g



Trick: Every front looks flat!

28



Fast Marching Algorithm

« Change of view: point source — planar source
* Front propagates from every point on the source
L3

r3—

2 T1 T2

/ _

/ Planar source

(z,n) +p=10"g (e, n) +p =0

29



Fast Marching Update Steps

* Front hits x1 attime dq
+ Hits o attime d»

+ When does the front arrive x3? <2
- Step 1: Model wave front

propagation from a planar

source

L] L2
(x,n) +p=20

n : unit propagation direction 9! 7? @2

P : source offset —
- Step 2: Compute the distance ~ Planar source

from 3 to the plane (2, n) +p=0

30



Practical Implementation

Fast Exact and Approximate Geodesics on Meshes

Vitaly Surazhsky
University of Oslo

Tatiana Surazhsky
University of Oslo

Abstract

The computation of geodesic paths and distances on triangle
meshes is a common operation in many computer graphics applica-
tions. We present several practical algorithms for computing such
geodesics from a source point to one or all other points efficiently.
First. we describe an implementation of the exact “single source.
all destination™ algorithm presented by Mitchell, Mount, and Pa-
padimitriou (MMP). We show that the algorithm runs much faster
in practice than suggested by worst case analysis. Next, we extend
the algonithm with a merging operation to obtain computationally
efficient and accurate approximations with bounded error. Finally,
to compute the shortest path between two given points, we use a
lower-bound property of our approximate geodesic algorithm to ef-
ficiently prune the frontier of the MMP algorithm, thereby obtain-
ing an exact solution even more quickly.

Keywords: shortest path, geodesic distance.

1 Introduction

In this paper we present practical methods for computing both exact
and approximate shortest (1.e. geodesic) paths on a triangle mesh.
These geodesic paths typically cut across faces in the mesh and are
therefore not found by the traditional graph-based Dijkstra algo-
rithm for shortest paths.

The computation of geodesic paths is a common operation in many

computer graphics applications. For example, parameterizing a
mesh often involves cutting the mesh into one or more charts

(e.g. [Krishnamurthy and Levoy 1

wen iy es s (it ://code.google.com/p/geodesic/

Danil Kirsanov
Harvard University

Steven J. Gortler
Harvard University

Hugues Hoppe
Microsoft Research

Figure 1: Geodesic paths from a source vertex, and isolines of the
geodesic distance function.

tance function over the edges. the implementation is actually prac-
tical even though. to our knowledge. it has never been done pre-
viously. We demonstrate that the algorithm’s worst case running
time of O(n?logn) is pessimistic. and that in practice, the algo-
rithm runs in sub-quadratic fime. For instance, we can compute
the exact geodesic distance from a source point to all vertices of a
400K-triangle mesh in about one minute.

Approximation algorithm We extend the algorithm with a merg-
ing operation to obfain computationally efficient and accurate ap-
proximations with bounded error. In practice, the algorithm runs in



Learning to Predict Geodesics



Metric Learning Formulation

A Embedding Space L)

\Q

. Given points P, Q on the surface, what is d;(P, 0)?
* Metric learning:

do(P, Q) = ||¢p(P) — p(Q)l,
. ¢b: embedding function (e.g., MLP)
. Usually, dim(¢( - )) > 3 andp = 2

33



Metric Learning Formulation

Embedding Space RN

¢ A
L. Q /ﬂ "

\Q

Q: Could “~” become “=" with
dim(( - )) < 00?
ds(P, Q) ~ l|lp(P) — p(Q)Il,

. ¢: embedding function (e.g., MLP)
. Usually, dim(¢( - )) > 3 andp = 2

34



Counter-Example

* Recall our SO(2) example:
- Distance preservation (geodesic v.s. fp) would

preserve topological structure
- Circle has different topology as line segments

- S0 SO(2) cannot be embedded into Euclidean
space without distortion

« Some results of the embedding for general metric
space to come

35



Some Result of Embedding
General Metrics in p



Distortion of Embedding

* Metrics:

- d(x,y) 2 0

- d(x,x)=0and Vy # x,d(x,y) > 0
- dx,y)+d(y,2) > dx,2)

e Assume ¢ : S Tanddy(-,-)andd;(-,-)
A, )
- expansion(f) = max
X,y dS(xa }’)

dg(x,
- contraciton(f) = max s(x,y)

xy dp(¢px), d(y))

- distortion(f) = expansion X contraction

37



A Well-Known Result

Theorem (Bourgain, 1985).
Let (X, d) be a metric space on n points. Then,
O(logn) 2
(X,d) s (O llos™ )

Remarks:

. Any n-point metric space (X, d) can be embedded in
¢, with distortion O(log n)

» To accommodate more points, one needs higher dim
space

- This bound can be shown tight (by worse case, w.r.t.
distortion)

38
http://ttic.uchicago.edu/~harry/teaching/pdf/lecture3.pdf



Influence

* We cannot expect that a finite (even infinite)
dimensional L”p space would approximate any metric

* To compromise, we usually require the approximation
to have higher precision for closer points:

« The geometry underlying closer points may be
better embeddable (e.g., on the same tangent
plane)

« Far away points just need to be known far away

* Recall the hinge loss for point feature learning in the
bottom-up instance segmentation lecture:

39



Learning to Predict Geodesics
Example work: GeoNet



Geodesics for Point Clouds

No connectivity information

41 Figure from He, Tong, et al. "GeoNet: Deep geodesic
networks for point cloud analysis." CVPR 2019 oral.



Task Formulation

* Input: Point Cloud & = {xi}i.\;l

. Output: Geodesic distance to K Euclidean neighbors
for each point

42



GeoNet: Geodesic Distance Regression

Step 1: Feature Extraction

& (xp)
¢ (xy)
7 -_— PointNet++  —— P (x3)
¢(XN)
Input Point Cloud & Point Features ¢p()
N x3 NxC
43 He, Tong, et al. "GeoNet: Deep geodesic networks for

point cloud analysis." CVPR 2019.



GeoNet: Geodesic Distance Regression

Step 2: Metric Learning
For each X; and its neighbor x::

Xi
¢ (x;) ~ /
Concatenation ® —_— —_ MLP —
/ Concatenated Features Geodesic
P(x;) (3 + 2C dimensional) Distance &;;
44 He, Tong, et al. "GeoNet: Deep geodesic networks for

point cloud analysis." CVPR 2019.



GeoNet: Geodesic Distance Regression

Step 2: Metric Learning
For each X; and its neighbor x::

J
x.
Cb (xi) / :
.
Concatenation ® _ — MLP _—
/ Concatenated Features Geodesic
P(x;) (3 + 2C dimensional) Distance &;;

Lgeo= Z z |gij_§ij|

X, €L x,€ENN(x;)

45 He, Tong, et al. "GeoNet: Deep geodesic networks for
point cloud analysis." CVPR 2019.



Geodesics Regression

Euclidean KNN GeoNet GT Geodesic Object

+ 5

1.0

0.0

46



Geodesics Induced Features

 Geodesics induced features are useful for
downstream tasks

. ——  PointNet++ MLP

o

I e
g »
1n £

¢ (xy)

Input Point Cloud 2’ Point Features ¢p(2")
N X3 NXxC

47



Applications
 Normal Estimation



‘R@O@W Normal Estimation

 Plane-fitting: find the plane that best fits the
neighborhood of a point of interest

1
- Let M = Z(xi—)‘c)(xi—X)Tand)‘cz—in,
. n

- n: the last principal component of M

49



Normal Estimation

k-NN + PCA GT Normal

50



Normal Estimation

d(u, v) is large although di(u, v) is small!

= Use geodesic neighborhoods for PCA

51



Normal Estimation

Critical parameter: number of neighbors k.
For unevenly sampled point cloud, we typically use all
points inside a ball of radius r

Tricky to choose in practice!

Image courtesy of Maks Ovsjanikov

http://www.lix.polytechnique.fr/~maks/Verona MPAM/
52 ;

Slides/lecture1.pdf



http://www.lix.polytechnique.fr/~maks/Verona_MPAM/Slides/lecture1.pdf
http://www.lix.polytechnique.fr/~maks/Verona_MPAM/Slides/lecture1.pdf

How about predicting the normal,
without PCA and estimation of 7 or k?

53



Learning to Regress Normals

PointNet++ —_—

¢ (xy)

Point Features ¢p()
N xC

1

MLP

}

Geodesic
Distance &;;

l

=L

geo

Input Point Cloud 2
N x3

L, + L,

otal

54
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Error Patterns

PointNet++ without
GeoNet features

PointNet++ with Large Error

GeoNet features

Small Error

55



Learning to Regress Normals

56



Advantage of Learning-based
Normal Estimation

« Can be robust to point cloud sampling strategy
» Without the need to determine neighborhood size

» Get orientation consistent normals (in classical
methods, this step is highly non-trivial)

57



Applications

 Mesh Reconstruction



Mesh Reconstruction

* Input: Point Cloud
 Output: Polygon Mesh

Figure courtesy of Pierre Alliez,
59 Laurent Saboret, Gaél Guennebaud



A Simple K-NN Approach

. For each point x; we try to greedily add all triangles
formed by X; and its neighbors:

.............................................................................................................

= {x;}" is the input point cloud
S = {} is the output mesh triangles

. fori=1ton:
find K nearest neighbors {p,
forj = 1to K:
fork =j+ 1to K:
triangle /\ = (x;, N], N,)
if /\ is notin S and S is manifold after adding A
add A\ to S

.............................................................................................................

}Klofx

60



Results not bad...




But has issues at boundaries




and some bad triangles

* Triangles formed by connecting the upper surface and
the bottom surface of the tabletop (intrinsically far)

63



and some bad triangles

@ Q: Do we have a certificate
of good triangles?

* Triangles formed by connecting the upper surface and
the bottom surface of the tabletop (intrinsically far)

64



Intrinsic-Extrinsic Ratio

Given two vertices u, v on the surface, the intrinsic-
extrinsic ratio is defined as:

do(u,v)

IER(u, v) = )
E\ Wy

Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance, Liu et al, ECCV2020
65



Visualization

1 7

U Geodesic
Distance

AT, Intrinsic-
o e Extrinsic
q Ratio
0 1

Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance, Liu et al, ECCV2020
66
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Intrinsic-Extrinsic Ratio
for Triangles

For a triangle /\ uvw:

do(u,v) + ds(v,w) + ds(w, u)
de(u,v) + dp(v,w) + dp(w, u)

IER(A\uvw) =

If point u, v, w is close enough, IER(A\uvw) <1+ ¢
= (very likely) Triangle is on the surface

Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance, Liu et al, ECCV2020
67



Intrinsic-Extrinsic Ratio
for Triangles

For a triangle /\ uvw:

do(u,v) + ds(v,w) + ds(w, u)
de(u,v) + dp(v,w) + dp(w, u)

IER(A\uvw) =

If point u, v, w is close enough,‘ ER(Auwww) <1+¢ ‘
= (very likely) Triangle is on the surface /

We learn to predict this

Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance, Liu et al, ECCV2020 q u antlty '
68



Meshing Point Clouds with
Intrinsic-Extrinsic Ratio Guidance

Case Study:
Input Point Cloud
g . » Input point cloud is sampled from
| o P .
Lo two closed thin surfaces §; and S,

" o At - {P;} are Euclidean nearest

pe neighbors of A
SZ .o. '1:5.‘ -{A,Pl,Pz,P3,P4}CS1

B - Ps € 5,

Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance, Liu et al, ECCV2020
69



Meshing Point Clouds with
Intrinsic-Extrinsic Ratio Guidance

Input Point Cloud Initial Candidates

k-NN Candidate
Proposition

Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance, Liu et al, ECCV2020
70



Meshing Point Clouds with
Intrinsic-Extrinsic Ratio Guidance

Input Point Cloud Initial Candidates Filtered Candidates
» P N b
- . . P,
h

* .A /

5/ /

S ”‘/ pf= A

. oPs , o
. T ' P p
Ps
k-NN Candidate Candidate F 11!:er1ng
Proposition by Intrinsic-
Extrinsic Ratio

Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance, Liu et al, ECCV2020
71



Meshing Point Clouds with
Intrinsic-Extrinsic Ratio Guidance

Input Point Cloud Initial Candidates Filtered Candidates Output Mesh
Pi P

LN

Ps
k-NN Candidate Candidate F 1l.ter1ng Iterative Candidate
Proposition g Selection
Extrinsic Ratio

Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance, Liu et al, ECCV2020
72



lterative Candidate Selection

* The added triangle should not break manifold
properties
- No edge has more than two incident faces
- No intersection between triangles

 Prefer equilateral triangles:
@] @]

. X o V

Measured by the ratio of longest edge to shortest edge

Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance, Liu et al, ECCV2020
73



Triangle Collision Detection

Guigue P, Devillers O. Fast and robust triangle-triangle overlap test using
orientation predicates. Journal of Graphics Tools. 2003 Jan 1;8(1):25-32.

Code: https://qgithub.com/erich666/jgt-code/tree/master/\Volume 08/Number 1/
Guique2003

Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance, Liu et al, ECCV2020 Read by yourself
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https://github.com/erich666/jgt-code/tree/master/Volume_08/Number_1/Guigue2003
https://github.com/erich666/jgt-code/tree/master/Volume_08/Number_1/Guigue2003
https://github.com/erich666/jgt-code/tree/master/Volume_08/Number_1/Guigue2003

Meshing Results

k-NN

Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance, Liu et al‘,‘ ECCV2020
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Robusthess

e =7 LT E,
o~ Eghhm‘
=BirAt

Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance, Liu et al, ECCV2020
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