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We aren’t talking about human pose
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Figure from https://www.tensorflow.org/lite/models/pose_estimation/overview 

https://www.tensorflow.org/lite/models/pose_estimation/overview


We are talking about object pose
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Figure from https://paperswithcode.com/task/6d-pose-estimation 

https://paperswithcode.com/task/6d-pose-estimation


Rigid Transformation
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rotate R ∈ 𝕊𝕆(3)

translate t ∈ ℝ3×1

source points target points

Transformation is relative!



Rigid Transformation

• Rigid transformation , where 

• Represented by a rotation , and a 
translation 

• All the rigid transformations  form the special 
Euclidean group, denoted by 

T(p) = Rp + t p ∈ ℝ3×1

R ∈ SO(3)
t ∈ ℝ3×1

{T}
SE(3)
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6D Pose Estimation
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recognize the 3D location and orientation 
of an object relative to a canonical frame

canonical frame

pose 1

pose 2



6D Pose & Rigid Transformation

• 6D pose: object-level rigid transformation, associated 
with a canonical frame


• rigid transformation: can be object-level or scene-
level, no predefined canonical frame

7



Agenda

• Introduction


• Rigid transformation estimation

- Closed-form solution given correspondence

- Iterative closet point (ICP)


• Learning-based approaches

- Direct approaches

- Indirect approaches
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Rigid Transformation Estimation



Rigid Transformation Estimation

10

Rigid transformation T(p) = Rp + t

source

rotate translate

target



Correspondence
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Rigid transformation T(p) = Rp + t

source

target

q1 = T(p1) = Rp1 + t

q2 = T(p2) = Rp2 + t

qn = T(pn) = Rpn + t

…

3n equations from 
n pairs of points

pi

qi



Estimate from Correspondence
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Rigid transformation T(p) = Rp + t

source

target

How many pairs of 
points are required to 

uniquely define a 
rigid transformation? 

pi

qi



Two Key Steps

• Find the correspondence between source and target

- combinatorial problem

- greedy heuristic or exhaustive search


• Estimate the rigid transformation given the 
correspondence

- constrained (for rotation) optimization

- closed-form solution
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Two Key Steps

• Find the correspondence between source and target

- combinatorial problem

- greedy heuristic or exhaustive search


• Estimate the rigid transformation given the 
correspondence

- constrained (for rotation) optimization

- closed-form solution
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Math is coming



Least-square Estimation 

of Rigid Transformation

• Given source points , and target points 
, the objective (least-square error) is:  

 

P = {pi}
Q = {qi}

L =
n

∑
i=1

∥Rpi + t − qi∥2
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Optimization Problem

• Parameters:  and 

• Target point cloud: 

• Source point cloud: 

• Objective: 

R ∈ 𝕊𝕆(3) t ∈ ℝ3×1

Q = {qi}

P = {pi}

min
R,t

n

∑
i=1

∥Rpi + t − qi∥2
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• Assuming  is known, 


- Recall the objective 

- Calculate the gradient 

- Solve :


           

R ∈ 𝕊𝕆(3)

L =
n

∑
i=1

∥Rpi + t − qi∥2

∂L
∂t

=
n

∑
i=1

(Rpi + t − qi)

∂L
∂t

= 0

17

Step I: Representing  by t R

t =
∑n

i=1 qi

n
−

∑n
i=1 Rpi

n



• Substituting the  expressed by , the 
objective can be simplified as


 ,


      where


                           ,


                           

t ∈ ℝ3×1 R

L =
n

∑
i=1

∥Rp̄i − q̄i∥2

p̄i = pi −
∑n

i=1 pi

n

q̄i = qi −
∑n

i=1 qi

n
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Step I: Representing  by t R
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L =
n

∑
i=1

∥Rp̄i − q̄i∥2

, 

     subject to

                         , 

                              

     where ,

                

⇒ R* = argminR∥RP − Q∥F

RTR = I
det(R) = 1

P = [p1, p2, ⋯, pn] ∈ ℝ3×n

Q = [q1, q2, ⋯, qn] ∈ ℝ3×n

Objective: 

Step II: Solve R



• Orthogonal Procrustes Problem
, subject to 

• Notice: No determinant constraint

• This problem has a closed form solution! 


- Project  to the space of orthogonal 
matrices


- Numerically, the magical SVD comes!

‣ If ,

‣ then 

• The proof can be found on the wiki

argminR∥RP − Q∥F RTR = I

M = QPT

M = UΣVT

R = UVT
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Step II: Solve R

https://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem


• How to satisfy the determinant constraint?


• Assume  

- If , then flip the sign of the last 

column of 

• The proof can be found in Umeyama's paper

R = UVT

det(R) = − 1
V
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Step II: Solve R

http://web.stanford.edu/class/cs273/refs/umeyama.pdf


Summary of Closed-Form Solution 

(Known Correspondences)

• Known: , 

• Objective: 

• Solution


-  (SVD)


-  (flip the sign of the last column of  if 
)


-

P = {pi} Q = {qi}

min
R,t

n

∑
i=1

∥Rpi + t − qi∥2

n

∑
i=1

(qi − q̄i)(pi − p̄i)T = UΣVT

R = UVT V
det(R) = − 1

t =
∑n

i=1 qi

n
−

∑n
i=1 Rpi

n
:= q̄ − Rp̄
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Two Key Steps

• Find the correspondence between source and target

- combinatorial problem

- greedy heuristic or exhaustive search


• Estimate the rigid transformation given the 
correspondence

- constrained (for rotation) optimization

- closed-form solution
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Iterative Closet Point (ICP)



Heuristic

• The closest point might be the corresponding point


• If starting from a transformation close to the actual 
one, we can iteratively improve the estimation
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Find Correspondence

26

source

target

pi

qi

source

target

pi

qi

GT correspondence ICP correspondence



Update Transformation
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source

target

Update transformation by 
minimizing the least square error

source

target

pi

qi

ICP correspondence



Iterate to Refine
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source

target

Find correspondence

Update transformation

source

target



General ICP Algorithm

Starting from an initial transformation 

1. Find correspondence: for each point in the source 
point cloud transformed with current transformation, 
find the nearest neighbor in the target point cloud  

2. Update the transformation by minimizing an objective 
function  over the correspondence  

3. Go to step 1 until the transformation is not updated

T = (R, t)

E(T )
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Illustration

30

Animation from https://github.com/yassram/iterative-closest-point Animation from https://github.com/pglira/simpleICP  

https://github.com/yassram/iterative-closest-point
https://github.com/pglira/simpleICP


Improve ICP

• Objective functions

- PointToPoint

- PointToPlane (faster convergence, but requires 

normal computation)


• Outlier removal: abandon pairs of points with too large 
distance
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Useful Libraries

• Open3D

- http://www.open3d.org/docs/release/tutorial/

pipelines/icp_registration.html
- http://www.open3d.org/docs/release/tutorial/

geometry/kdtree.html

• PCL: https://pointclouds.org/documentation/
group__registration.html
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http://www.open3d.org/docs/release/tutorial/pipelines/icp_registration.html
http://www.open3d.org/docs/release/tutorial/pipelines/icp_registration.html
http://www.open3d.org/docs/release/tutorial/geometry/kdtree.html
http://www.open3d.org/docs/release/tutorial/geometry/kdtree.html
https://pointclouds.org/documentation/group__registration.html
https://pointclouds.org/documentation/group__registration.html
https://pointclouds.org/documentation/group__registration.html


Limitation of ICP

• However, even with improvement

- Easy to get stuck in local minima

- Require a good initialization to work

33



Acquire the Initialization for ICP
• Go-ICP (correspondences based on features)


- http://www.open3d.org/docs/release/tutorial/
pipelines/global_registration.html

- https://github.com/yangjiaolong/Go-ICP

• Teaser (more robust to outliers)

- https://github.com/MIT-SPARK/TEASER-plusplus

34 Read by yourself

http://www.open3d.org/docs/release/tutorial/pipelines/global_registration.html
http://www.open3d.org/docs/release/tutorial/pipelines/global_registration.html
https://github.com/yangjiaolong/Go-ICP
https://github.com/MIT-SPARK/TEASER-plusplus


Learning-based Approach



Two Categories of Approaches

• Direct: predict  directly


• Indirect: predict corresponding pairs 
- points in the canonical frame  

- points in the camera frame  

- estimate  by solving 


(R, t)

{(pi, qi)}
{pi}

{qi}
(R, t)

min
R,t

n

∑
i=1

∥Rpi + t − qi∥2

36



Direct Approaches



Direct Approaches
• Input: cropped image/point cloud/depth map of a 

single object

• Output: (R, t)

38

Point cloud

Depth map

Image

Neural 
Network (R, t)



Challenges for Direct Approaches

• The choice of the representation of 

- Recall Lec 5: rotation matrix, Euler angles, 
quaternion, axis-angle, … (more will be introduced 
in this lecture)


- Which is more learnable for neural networks?

R

39



Direct Approaches

Representation of rotation

Loss for rotation

Example: DenseFusion



Continuity: 2D Rotation Example

41

2D rotation can be parameterized by θ

However, the mapping is discontinuous due 
to the topology difference 

Zhou, Yi, et al. "On the continuity of rotation representations in neural networks." CVPR 2019



Rotation Representations
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Representation Continuous 
parameterization Unique for a rotation

Rotation Matrix ✔ ✔

Euler Angle No No (gimbal lock)
Angle-axis No No (singularity)
Quaternion No No (double covering)

Note that neural networks are generally continuous

Fitting a discontinuous function is 

not friendly to neural networks



Continuous Representation

• Next, we will introduce two continuous 
representations: 6D (vector) and 9D (vector)

43



6D Representation

• 6D representation: , where 

• Convert   to a rotation matrix 
 through the Gram-Schmidt process, 

where  with unit length


, , 

• Convert a rotation matrix to 6D:  

[aT
1 , aT

2 ] a1, a2 ∈ ℝ3x1

x = [aT
1 , aT

2 ]
R = [b1, b2, b3]

b1, b2, b3 ∈ ℝ3x1

b1 =
a1

∥a1∥
b2 ∝

a2

∥a2∥
− ⟨b1,

a2

∥a2∥
⟩b1 b3 = b1 × b2

x = [bT
1 , bT

2 ]

44

Zhou, Yi, et al. "On the continuity of rotation representations in neural networks." CVPR 2019



9D Representation

• 9D representation (rotation matrix): 

• Find the closest rotation matrix 
- Recall the Orthogonal Procrustes Problem


, subject to 
- equivalent to  and 

• Implementation

X ∈ ℝ3x3

R ∈ SO(3)

argminR∥RP − Q∥F RTR = I
P = I Q = X

45

Levinson, Jake, et al. "An analysis of svd for deep rotation estimation." NeurIPS 2020

https://github.com/google-research/google-research/tree/master/special_orthogonalization


Direct Approaches

Representation of rotation

Loss for rotation

Example: DenseFusion



Loss for Direct Approaches

• shape-agnostic: distance between   and 

• shape-aware: distance between the same shape 
 transformed by  and  

respectively

(R, t)
(RGT, tGT)

X ∈ ℝ3×n (R, t) (RGT, tGT)

47



Shape-agnostic Loss

• Rotation

- Geodesic distance (angle difference, relative 

rotation error) on : 
- Mean square error over : 
-  distance on representation : 

• Translation

-  distance: 

SO(3) arccos[
1
2

(tr(RGT RT) − 1)]

ℝ3×3 ∥R − RGT∥2
F

Lp x ∥x − xGT∥p

Lp ∥t − tGT∥p

48



Challenges: Symmetry 
• Symmetry introduces ambiguities of GT labels


• Require specially designed losses to tackle it

49

Examples of symmetric objects in YCB dataset



Rotational Symmetry

50

1 symmetry axis

symmetry order 2

1 symmetry axis

symmetry order infinite

3 symmetry axis

symmetry order (4, 2, 2)



Shape-agnostic Loss for 
Symmetric Objects

• Symmetry group: Multiple symmetry-equivalent GT 
rotations  (n is the order of 
symmetry)


• Min of N loss (for finite order of symmetry)


ℛ = {R1
GT, R2

GT, ⋯, Rn
GT}

min
Ri

GT∈ℛ
L(Ri

GT, R)

51

Q: How to deal with infinite order? 



Shape-agnostic Loss for 
Symmetric Objects (Infinite Order)

52 Read by yourself

θ

Use the angle between 
two symmetry axes



Motivation of Shape-aware Loss
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target pose predicted pose1 predicted pose2

Similar angle difference, but very different perception error 



Shape-aware Loss

• Given a shape , the loss for rotation can be 
the distance between  and 

• e.g.,   (per-point Mean Square 
Estimation (MSE))

X ∈ ℝ3×n

RX RGT X

L = ∥RX − RGT X∥2
F

54



Shape-aware Loss 

for Symmetry Objects

• With  as the distance metric, we can 
also apply the Min of N loss 


                       

∥RX − RGT X∥2
F

L = min
Ri

GT∈ℛ
∥RX − Ri

GT X∥2
F

55



Shape-aware Loss 

for Symmetry Objects

• Recall the distance metrics for point clouds in Lec7

- Chamfer distance

- earth mover distance


• Those distance metrics are compatible with symmetry 
(even infinite order)


• But requires a shape and might get stuck in local minima

56

Xiang et al., “PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes”, RSS 2018



Example of Local Minima for 
Chamfer Distance
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No local minima for Min of N

CD=2.02

Rotate the red left a bit?



Example of Local Minima for 
Chamfer Distance
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No local minima for Min of N

CD=2.05



Example of Local Minima for 
Chamfer Distance

59

No local minima for Min of N

CD=2.02

Reset, and try rotate right:



Example of Local Minima for 
Chamfer Distance

60

No local minima for Min of N

CD=2.50



Example of Local Minima for 
Chamfer Distance

61

Note: No local minima for Min of N

CD=2.05 CD=2.02 CD=2.50



Direct Approaches

Representation of rotation

Loss for rotation

Example: DenseFusion



Example: DenseFusion
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Wang et al., “DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion”, CVPR 2019

Segment objects



Example: DenseFusion
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Wang et al., “DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion”, CVPR 2019

Get the image crop and the point cloud for an object



Example: DenseFusion
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Wang et al., “DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion”, CVPR 2019

Encode appearance (image) with CNN 

and geometry (point cloud) with PointNet 

appearance



Example: DenseFusion
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Wang et al., “DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion”, CVPR 2019

Predict poses from features

appearance



Example: DenseFusion

67
Wang et al., “DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion”, CVPR 2019

Compute shape-aware loss 

non-symmetric objects:

per-point MSE 

symmetric objects:

chamfer distance

Min-of-N as alternative?



Indirect Approaches



Indirect Approaches

• Input: cropped image/point cloud/depth map of a 
single object


• Output: corresponding pairs 
- points in canonical frame  

- points in camera frame 
- estimate  by solving


{(pi, qi)}
{pi}

{qi}
(R, t)

min
R,t

n

∑
i=1

∥Rpi + t − qi∥2

69



Two Categories of 

Indirect Approaches

• If points in the canonical frame are known, predict 
their corresponding locations in the camera frame

• If points in the camera frame are known, predict their 
corresponding locations in the canonical frame

70



Given Points in the Canonical Frame, Predict 
Corresponding Location in the Camera Frame

• Recall: Three correspondences are enough 

• Which points in the canonical frame should be given?


- Choice by PVN3D: keypoints in the canonical frame

71
He et al., “PVN3D: A Deep Point-wise 3D Keypoints Voting Network for 6DoF Pose Estimation”, CVPR 2020



• Option1: bounding box vertices


• Option 2: farthest point sampling (FPS) over CAD 
object model

Keypoint Selection

72
Chen et al., “G2L-Net: Global to Local Network for Real-time 6D Pose Estimation with Embedding Vector Features”, CVPR 2020



Example: PVN3D
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Get point-wise features 

by fusing color and geometry features



Example: PVN3D
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For each keypoint:

• Voting: for each point in the camera frame, predict its offset to 

the keypoint (in the camera frame)


• Clustering: find one location according to all the candidates

Keypoint



Given Points in the Camera Frame, Predict 
Corresponding Location in the Canonical Frame

• Which points in the camera frame should be given?

- Choice by NOCS: every point in the camera frame

75
Wang, He, et al. "Normalized object coordinate space for category-level 6d object pose and size estimation." CVPR 2019.

3D point in the camera frame

(2D visible pixel with depth)

3D point in the (normalized) 
canonical frame



Example: NOCS

76
Wang, He, et al. "Normalized object coordinate space for category-level 6d object pose and size estimation." CVPR 2019.

Output NOCS Map 
H × W × 3

Input Image

Note: the object is normalized to have unit diagonal of bounding box in the canonical 
space, so the canonical space is called “Normalized Object Canonical Space” (NOCS)



Example: NOCS 

for Symmetric Objects 

• Given equivalent GT rotations 
 (finite symmetry order n), 

we can generate n equivalent NOCS maps


• Similar to shape-agnostic loss in direct approaches, 
we can use Min of N loss

ℛ = {R1
GT, R2

GT, ⋯, Rn
GT}

77
Wang, He, et al. "Normalized object coordinate space for category-level 6d object pose and size estimation." CVPR 2019.



Umeyama’s Algorithm

• However, the target points in the canonical space of 
NOCS are normalized, and thus we also need to 
predict the scale factor


• Similarity transformation estimation (rigid 
transformation + uniform scale factor)


• Closed-form solution

- Umeyama algorithm: http://web.stanford.edu/class/

cs273/refs/umeyama.pdf
- Similar to the counterpart without scale

78 Read by yourself

http://web.stanford.edu/class/cs273/refs/umeyama.pdf
http://web.stanford.edu/class/cs273/refs/umeyama.pdf
http://web.stanford.edu/class/cs273/refs/umeyama.pdf


Tips for Homework 2

• For learning-based approaches

- Start with direct approaches

- Crop the point cloud of each object from GT depth 

map given GT segmentation mask

- Train a neural network, e.g. PointNet, with shape-

agnostic loss

- Improve the results considering symmetry
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