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Semantic Segmentation v.s.
Instance Segmentation
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Goal of Instance Segmentation

* Find as many objects as possible from the scene.

« Segmentation results should be as accurate as
possible.



Intersection-over-Union (loU)
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- For two sets A and B, IoU(A, B) =

Predicted box
Ground Truth

Area of Overlap
Intersection over Union (loU) =
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https://towardsdatascience.com/map-mean-average-precision-might-confuse-you-5956f1bfa9e2

5



Intersection-over-Union (loU)

« Can also be used for measuring segmentation
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Top-down Approaches:
Proposal Generation & Point Association



First Step: Generate Proposals
(e.g., Bounding Boxes)

Proposals




Second Step:




Two Key Questions:

* How to generate (instance) proposals?

« How to associate points with proposals?
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Details of Step 1:
How to generate proposals?



First of all, what is a good
proposal representation?

Easy to parameterize and predict

Easy to classify whether a point belongs to it

Parameterization:

- Primitive type

- Parameters (position, rotation, ...)

Common choices: 3D bounding box, spheres
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Proposal Generation: Non-Learning

Sliding window: The straightforward, heuristic
method to generate proposals without learning

Slide a (template) window over the input point cloud

stride=(0.5, 0.5) stride=(1.5, 1.5) stride=(1.5, 0.5)
size=(1.5, 1.5) size=(1.5, 1.5) size=(1.5, 1.0)
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Proposal Generation: Learning-based

 To have a high recall, we need to densely slide a
window

« However, too heavy burden for the association step
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Examples of Learning-based
Proposal Generation

 Last time:
- 2D detection-based proposal (Frustum PointNet)
- X-ray proposal (PointPillar)
- Voting-based proposal (VoteNet)

* This time:

- Bounding box prediction proposal (3D-BoNet)
- Shape generation proposal (GSPN)
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Examples of Learning-based
Proposal Generation

* This time:
- Bounding box prediction proposal (3D-BoNet)
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3D-BoNet Pipeline
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Figure 1: The 3D-BoNet framework for instance segmentation on 3D point clouds.

17 Yang, Bo, et al. "Learning object bounding boxes for 3d
instance segmentation on point clouds." NeurlPS (2019).



3D-BoNet Pipeline

“set prediction” task

r
Global Features
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Figure 1: The 3D-BoNet framework for instance segmentation on 3D point clouds.

18 Yang, Bo, et al. "Learning object bounding boxes for 3d
instance segmentation on point clouds." NeurlPS (2019).



Bounding Box Prediction

* Bounding box parameterization:

{xmin’ y min’® Zmin’ xmax’ y max’ Zmax}

* Regress a predefined, fixed number (H) of bounding
boxes

Score
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Bounding Box Prediction

* Bounding box parameterization:

{xmin’ y min’® Zmin’ xmax’ y max’ Zmax}

- Regress a predefined, fixed number (H) of bounding
boxes

Score

H
- ~ R
Global » Network
features
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How to supervise?
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Loss: Bounding Box Association

How to know the GT on-the-fly?

Find a match between the GT and predicted boxes
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Optimal Association (2D case)

3

4

GT boxes Prediction

22



Optimal Association (2D case)

AN

E RN
E AL TTNN [EDEPP |
- VS

Matching 1 Matching 2

23



Optimal Association

 Objective: maximize the overall match gain
« Hungarian algorithm can solve this problem (similar to

EMD)
(D

loU=0.7

The overall gainis 0.7 + 0.9 + 0.88 + 0.8

« Gain = cost, maximize = minimize
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https://en.wikipedia.org/wiki/Hungarian_algorithm

Association Cost

* The cost (weight of bipartite graph) should evaluate
the similarity between the predicted box and GT box
(e.g., L, over b.box vertices offset)

e 1 D,
Csl = . Z(BZ- — B,)?

 Other criteria
- Soft loU
- Cross-Entropy score

* The cost can be used as the loss directly
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Examples of Learning-based
Proposal Generation

* This time:

- Shape generation proposal (GSPN)
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GSPN Pipeline

with a seed point
(e.g., from FPS)

Extract local
region feature

Generate a shape proposal,
Induce the bounding box

o7 Yi, Li, et al. "Gspn: Generative shape proposal network for 3d
instance segmentation in point cloud." CVPR 2019.



Point Cloud as Object Proposal

* Unlike primitive-based proposals, it is possible to
generate a point cloud as a proposal (recall the
single image to point cloud work)
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Generate Proposal as a Point Cloud

« Take a seed point and local context of different scales
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Generate Proposal as a Point Cloud

 Predict “objectness” (object v.s. non-object)

objectness
R
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Generate Proposal as a Point Cloud

* Decode points, e.g., by a fully-connected network, as
In single-image to point cloud work
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Generate Proposal as a Point Cloud

* Predict a center offset
center of the instance

from the seed point to the
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Losses for Point Cloud Proposals

* Only for positive proposals
- Center prediction loss: huber loss (smooth 1)
- Shape generation loss: chamfer distance

 For all the proposals
- Objectness loss: cross-entropy
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How to associate points
with proposals?



Basic Idea

» Given the proposal, predict a binary mask for each
point whether the point belongs to the instance
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Example: 3D-BoNet

- Steps: 3
- Extract per-point features F; €

- Get instance-aware features F|

> point features (D dim)
~ bounding parameters (6 dim)
> confidence (1 dim)
- Predict point-wise mask M; € {0,1 W

RNXD

= RNX(D+7) e.g.
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Point Label Generation and Loss

» Given the matched proposal and GT

- For each proposal, we can induce a per-point
binary mask given its corresponding GT

overall instance label Instance label for each proposal
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Point Label Generation and Loss

» Given the matched proposal and GT
- For each proposal, we can induce a per-point
binary mask given its corresponding GT
- We use a cross-entropy loss to do per-point binary
classification

overall instance label Instance label for each proposal
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Bottom-up Approaches



What is Bottom-up?

* A bottom-up approach is grouping the pieces of the
points together to form an object.
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What is Bottom-up?

* A bottom-up approach is grouping the pieces of the
points together to form an object.
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What is Bottom-up?

* A bottom-up approach is grouping the pieces of the
points together to form an object.

* In contrast, top-down: directly predict a proposal as
object proxy and verity
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Grouping-based Instance Segmentation

« Key Question: What points/fragments should be
grouped?
- Distance function
» Group procedure
- Grouping/Clustering algorithm
» Post-processing .33 "
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Grouping-based Instance Segmentation
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Key Ideas

* Points in the same instance should be close in the
feature space, such that clustering can be applied.

d(fy 1)
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Distance in Feature Space

« Common choice: Lp-distance
- e.g., Ly-distance: ||F; — Fj|,

 Potential features to consider:
- Semantic features (about semantic label)
- Spatial feature (about point location)
- Instance feature (to distinguish instances)
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Candidate I: Semantic Feature

* Learn semantic feature for each point by point cloud
segmentation loss.

MLAJiang, Li, et al. "Pointgroup: Dual-set point grouping for 3d instance segmentation." Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.
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Candidate Il: Spatial Feature

* Use 3D coordinates of points?
- Reasonable, however,
- Fails for points around object boundaries

MLAJiang, Li, et al. "Pointgroup: Dual-set point grouping for 3d instance segmentation." Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.
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Candidate Il: Spatial Feature

 Learn to predict object center coordinates, and use
the predicted object center as the spatial feature
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Predicted Object Centers

MLAJiang, Li, et al. "Pointgroup: Dual-set point grouping for 3d instance segmentation." Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.
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Candidate lll: Instance Features

- Fundamentally, we hope that the feature can be
powerful enough to distinguish different instances

« Why not directly design a loss to learn it?!
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Color map of distances between the given
point and rest points (darker means closer)

Wang, Weiyue, et al. "Sgpn: Similarity group proposal network for 3d point cloud instance
segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
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Contrastive Loss

 Build loss for each pair of points to train point
features.

P

,- 'U(F

Semantic label Instance label

Wang, Weiyue, et al. "Sgpn: Similarity group proposal network for 3d point cloud instance
segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

51



Same Instance Case

. Point 7 and point j belongs to in the same instance.

= |F; = Fjl

Semantic label Instance label

Wang, Weiyue, et al. "Sgpn: Similarity group proposal network for 3d point cloud instance
segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
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Same Instance Case

. Point 7 and point j belongs to different instances with
the same semantic label.

l(la.]) — amaX(O,Kl _ ”Fl — F}ll)

C
“If the feature distance is

below K, it is penalized”

4

sl

Semantic label Instance label

Wang, Weiyue, et al. "Sgpn: Similarity group proposal network for 3d point cloud instance
segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
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Grouping-based Instance Segmentation
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Grouping by Clustering
Point Features

« Choose your favorable clustering algorithm
- DBSCAN
- Mean shift
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Point Feature — Merge Decision

* Instead of learning a feature and tuning a grouping
algorithm, can we directly learn a grouping algorithm?

Merge by
Grouping Policy

Luo T, Mo K, Huang Z, et al. Learning to group: a bottom-up framework for 3d part discovery in unseen
categories[J]. arXiv preprint arXiv:2002.06478, 2020.
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Learning to Group

» Assuming the instance consists of some parts.

« Core idea: use a neural network to predict if two parts
should be merged into one instance.

H@\Ixf

2N x (f+3) “Yes/No

——<N x f

(¢) Verification Network

Luo T, Mo K, Huang Z, et al. Learning to group: a bottom-up framework for 3d part discovery in unseen
categories[J]. arXiv preprint arXiv:2002.06478, 2020.
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Final Step: Post-Processing

» May also be achieved by learning methods

* e.g., we use a network to predict a score which can
represent the loU between prediction and ground
truth, and remove instances with low scores.
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